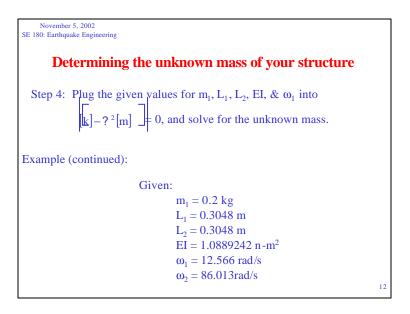
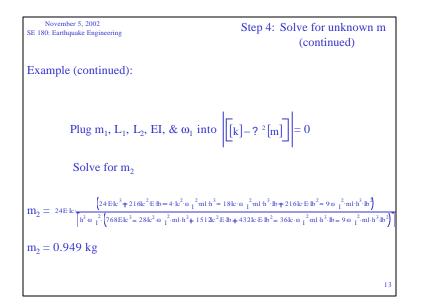


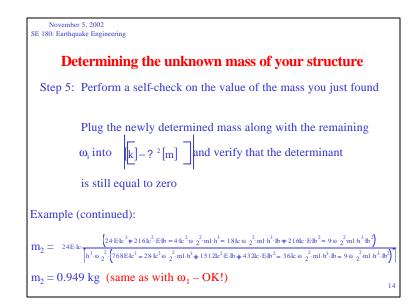

| November 5, 2<br>SE 180: Earthquake |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                               |                                                                                                                                               | Step                            | 1: Mass and                     | Stiffness   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-------------|
|                                     | (continued):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                                                             | $\mathbf{h} = \begin{bmatrix} \mathbf{m}_1 & 0 & 0 \\ 0 & \mathbf{m}_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ | 0 0 0                           | Matrices                        | (continued) |
| k =                                 | $ \begin{bmatrix} \frac{48 \text{ EI}_{\text{c}}}{\text{h}^3} & \frac{-24 \text{ EI}_{\text{c}}}{\text{h}^3} \\ \frac{-24 \text{ EI}_{\text{c}}}{\text{h}^3} & \frac{24 \text{ EI}_{\text{c}}}{\text{h}^3} \\ 0 & \frac{-6 \text{ EI}_{\text{c}}}{\text{h}^2} \\ 0 & \frac{-6 \text{ EI}_{\text{c}}}{\text{h}^2} \\ \frac{6 \text{ EI}_{\text{c}}}{\text{h}^2} & \frac{-6 \text{ EI}_{\text{c}}}{\text{h}^2} \\ \frac{6 \text{ EI}_{\text{c}}}{\text{h}^2} & \frac{-6 \text{ EI}_{\text{c}}}{\text{h}^2} \\ \end{bmatrix} $ | $\frac{\overset{8 \text{EI}}{h}_{c}}{\overset{2 \text{EI}}{h}} + \frac{\overset{4 \text{EI}}{2 \text{h}}}{\overset{2 \text{EI}}{2 \text{h}}}$ | $\frac{\frac{2 \cdot E \cdot I_b}{2 \cdot h}}{\frac{8 \cdot E \cdot I_c}{h}} + \frac{4 \cdot E \cdot I_b}{2 \cdot h}$                         | $\frac{2 \cdot E \cdot I_c}{h}$ | $\frac{2 \cdot E \cdot I_c}{h}$ | 7           |

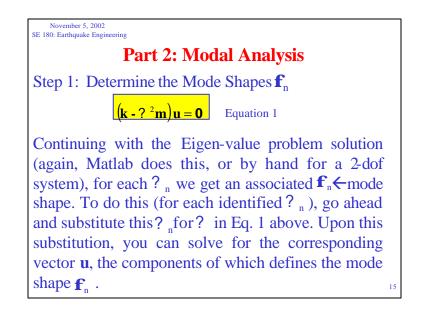


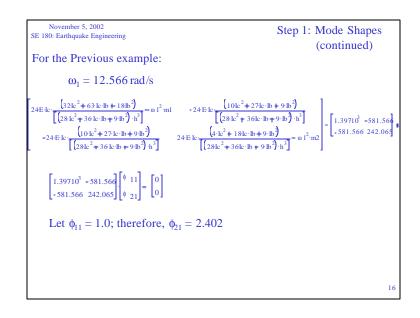


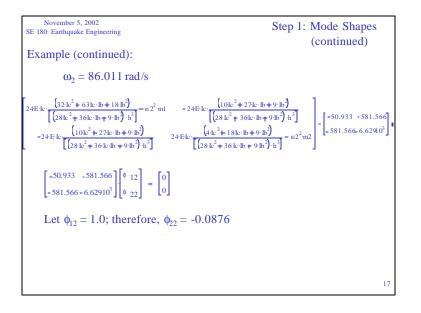


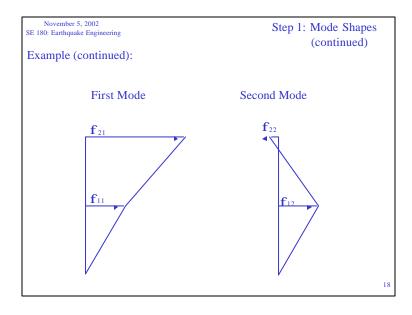



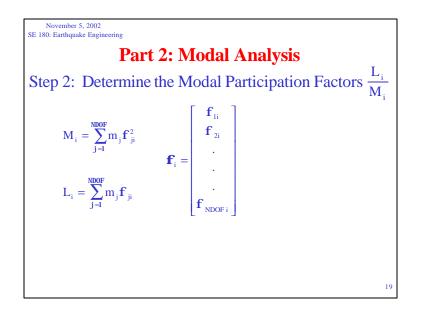


November 5, 2002  
SE 180: Earthquake Engineering  
Determining the unknown mass of your structure  
Step 3: Solve the Eigen-value problem to determine the determinant of  

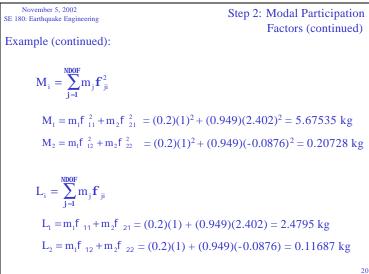

$$\begin{bmatrix} k \end{bmatrix} - ?^2 [m] \end{bmatrix}$$
Example (continued):  


$$\begin{bmatrix} k \end{bmatrix} - ?^2 [m] = \begin{bmatrix} 24E \operatorname{lc} \frac{(32L^2 + 63\operatorname{lc} \operatorname{lb} + 18\operatorname{lb}^2)}{[(28L^2 + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2)} & 24E \operatorname{lc} \frac{(10L^2 + 27Le\operatorname{lb} + 9\operatorname{lb}^2)}{[(28L^2 + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2)} \\ 24E \operatorname{lc} \frac{(4L^2 + 18Le \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2)}{[(28L^2 + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 9\operatorname{lb}^2) + 36\operatorname{lc} \operatorname{lb} + 36\operatorname{lc} \operatorname{lb} + 36\operatorname{lc} \operatorname{lb} + 36\operatorname{lb} + 36\operatorname{lb} + 36\operatorname{$$





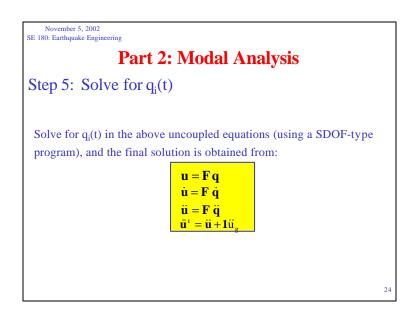









November 5, 2002  
SE 180: Earthquake Engineering  
Example (continued):  


$$\frac{L_1}{M_1} = \frac{2.4795 \text{ kg}}{5.67535 \text{ kg}} = 0.437$$

$$\frac{L_2}{M_2} = \frac{0.11687 \text{ kg}}{0.20728 \text{ kg}} = 0.563$$
21

November 5, 2002  
SE 180: Earthquake Engineering  
**Part 2: Modal Analysis**  
Step 3: Determine K<sub>i</sub>  

$$K_i = ?_i^2 M_i$$
  
 $K_1 = ?_1^2 M_1 = (12.566)^2 (5.67535) = 896.1625$   
 $K_2 = ?_2^2 M_2 = (86.011)^2 (0.20728) = 1533.435$ 

## November 5, 2002 SE 180: Earthquake Engineering **Part 2: Modal Analysis** Step 4: Add Damping Now, you can add any modal damping you wish (which is another big plus, since you control the damping in each mode individually). If you choose $\zeta_i = 0.02$ or 0.05, the equations become: $\ddot{q}_i + 2\mathbf{x}_i ?_i \dot{q}_i + ?_i ^2 q_i = -\frac{L_i}{M_i} \ddot{u}_g, i = 1, 2, ... NDOF$



November 5, 2002 SE 180: Earthquake Engineering Step 5: Solve for  $q_i(t)$ (continued)

We will solve for  $q_i(t)$  using a modified version of the spreadsheet for solving for the response of a SDOF system using Newmark's Method

November 5, 2002 SE 180: Earthquake Engineering

Using Modal Analysis, we can rewrite the original coupled matrix equation of motion as a set of un-coupled equations.

$$\ddot{q}_i + 2?? \dot{q}_i + ?_i^2 q_i = -\frac{L_i}{M_i} \ddot{u}_g$$
,  $i = 1, 2, ..., NDOF$ 

with initial conditions of  $d_i(t=0) = d_{i_0}$  and  $v_i(t=0) = v_{i_0}$ 

Note that total acceleration or absolute acceleration will be

$$\ddot{q}_{iabs} = \ddot{q}_i + \ddot{u}_g$$

November 5, 2002 SE 180: Earthquake Engineering

## Part 3: Spreadsheet for Modal Analysis

Step-By-Step Procedure For Setting Up A Spreadsheet For Using Newmark's Method and Modal Analysis To Solve For The Response Of A Multi-Degree Of Freedom (MDOF) System

Start with the equation of motion for a linear multi-degree of freedom system with base ground excitation:

 $\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\mathbf{1}\ddot{\mathbf{u}}_{\sigma}$ 

....

November 5, 2002 SE 180: Earthquake Engineering

We can solve each one separately (as a SDOF system), and compute histories of  $q_i$  and their time derivatives. To compute the system response, plug the q vector back into  $\mathbf{u} = \mathbf{F} \mathbf{q}$  and get the u vector (and the same for the time derivatives to get velocity and acceleration).

The beauty here is that there is no matrix operations involved, since the matrix equation of motion has become a set of un-coupled equation, each including only one generalized coordinate  $q_n$ .

In the spreadsheet, we will solve each mode in a separate worksheet.

27

25

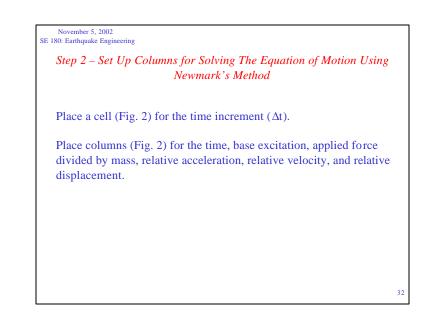
November 5, 2002 SE 180: Earthquake Engineering

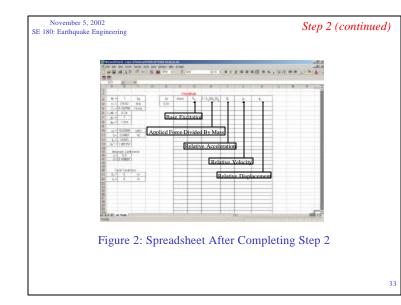
Step 1 - Define System Properties and Initial Conditions for First Mode

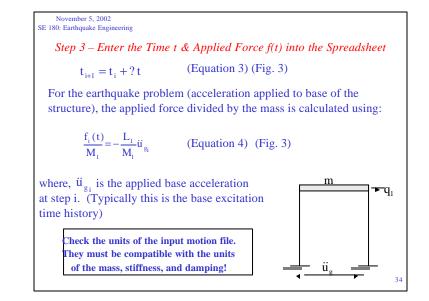
- (A) Begin by setting up the cells for the Mass, Stiffness, and Damping of the SDOF System (Fig. 1). These values are known.
- (B) Set up the cells for the modal participation factor  $\frac{L_i}{M_i}$  and mode shape

 $\boldsymbol{f}_i$  (Fig. 1). These values must be determined in advance using Modal Analysis.

(C) Calculate the Natural Frequency of the SDOF system using the equation

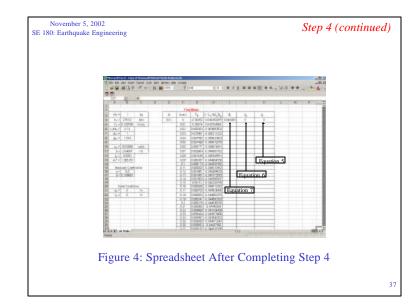

 $?_i = \sqrt{K_i/M_i}$ 

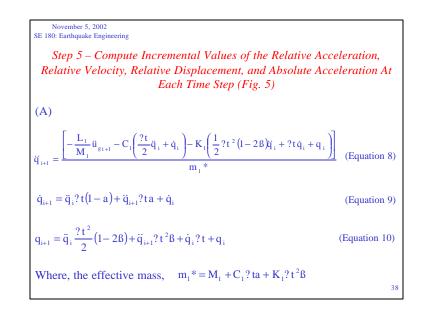

(Equation 1)

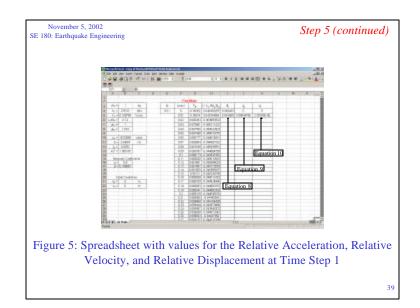

29

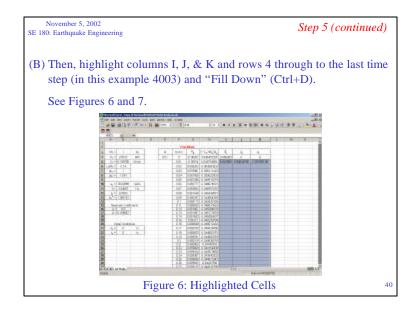
<page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><image><image><image><image><page-footer><page-footer>

November 5. 2002<br/>SE 180: Earthquake EngineeringStep 1 (continued)Note:If the system damping is given in terms of the Modal Damping<br/>Ratio ( $\zeta_i$ ) then the Damping ( $C_i$ ) can be calculated using the equation:<br/> $C_i = 2 \zeta_i \omega_i M_i$  (Equation 2)(D) Set up the cells for the 2 Newmark Coefficients  $\alpha \& \beta$  (Fig. 1),<br/>which will allow for performing<br/>a) the Average Acceleration Method, use  $a = \frac{1}{2}$  and  $\beta = \frac{1}{6}$ .<br/>b) the Linear Acceleration Method, use  $a = \frac{1}{2}$  and  $\beta = \frac{1}{4}$ .(E) Set up cells (Fig. 1) for the initial displacement and velocity ( $d_o$  and<br/> $v_o$  respectively)

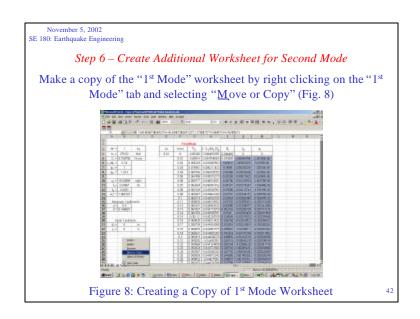


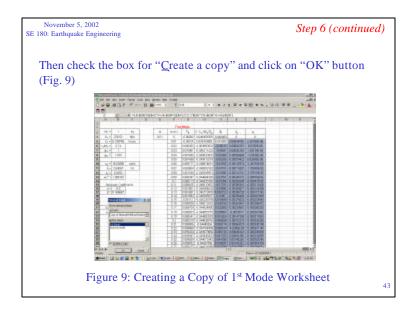



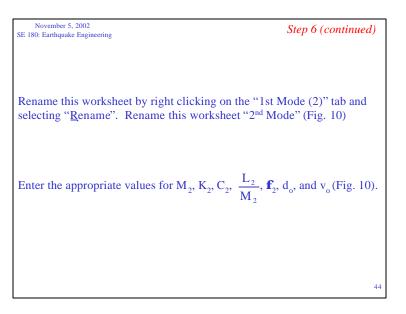





| November 5, 2002<br>E 180: Earthquake Engineering | Step 3 (continued) |
|---------------------------------------------------|--------------------|
|                                                   |                    |
|                                                   |                    |
| Figure 3: Spreadsheet After                       | Completing Step 3  |

| November 5, 200<br>SE 180: Earthquake Eng |                                                                                                     |                                                                            |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| -                                         | *                                                                                                   | s of the Relative Acceleration, Relative cement, and Absolute Acceleration |
| 1 A A                                     | al Relative Displace<br>l conditions (Fig. 4                                                        | ement and Relative Velocity are known                                      |
|                                           | $q(t=0) = d_o$                                                                                      | (Equation 5)                                                               |
|                                           | $\dot{q}(t=0) = v_{o}$                                                                              | (Equation 6)                                                               |
| (B) The Initia                            | l Relative Acceleration                                                                             | ation (Fig. 4) is calculated using                                         |
| $\ddot{q}(t=0) =$                         | $= -\frac{\mathrm{Li}}{\mathrm{Mi}}\ddot{\mathrm{u}}_{\mathrm{g}} - 2??\mathbf{v}_{\mathrm{o}} - ?$ | $^{2}d_{o}$ (Equation 7)                                                   |
|                                           |                                                                                                     | 36                                                                         |



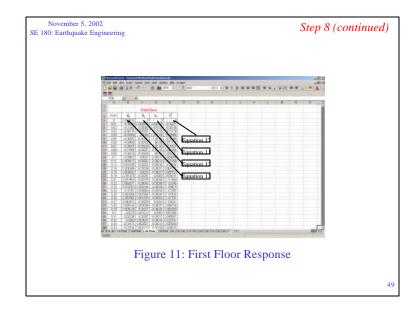



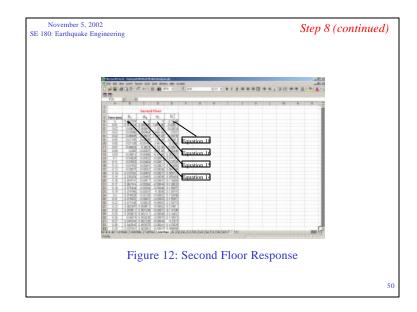



|              | the period base rights like the                                                                                                                                                                                                                                                                        | This has not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|              | 8-837 B                                                                                                                                                                                                                                                                                                | Horizontal Antipation (1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| 14           | a a year                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|              | 00         1         -12           1/2         23/5         400           1/2         23/5         400           1/2         23/5         800           1/2         23/5         800           1/2         1/2         800           1/2         1/2         800           1/2         1/2         800 | Determine         Determine           00         00         1,23,5,5         5,5         6,7           01         12,02,7         0,00         1,00,00         1,00,00           01         12,02,7         0,00         1,00,00         1,00,00           02         12,00,00         0,000         1,00,00         1,00,00           02         12,000         0,000         1,000         1,000         1,000           02         12,000         0,000         1,000         1,000         1,000         1,000           02         12,000         0,000         1,000         1,000         1,000         1,000           02         12,000         0,000         1,000         1,000         1,000         1,000           02         12,000         0,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000 |                 |
|              | 201.000<br>201.000                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Teenh        | al si sali i                                                                                                                                                                                                                                                                                           | 111 10-0 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and of the      |
| Figure 7: Sp | readsheet                                                                                                                                                                                                                                                                                              | After "Filling Down" Colur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nns I through K |









|                          | 2 (100) 800 (100) (100) (100)<br>2 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (10 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 10: Worksheet for |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| SE 180: Earthquake Engineering                                 |  |
|----------------------------------------------------------------|--|
| Step 7 – Repeat Step 6 for Additional Modes                    |  |
| Step 8 – Determine the Response at Each of the Floors          |  |
| Determine the Response of the first floor using the equations: |  |
| $\mathbf{u} = \mathbf{F} \mathbf{q}$                           |  |
| $\dot{\mathbf{u}} = \mathbf{F} \dot{\mathbf{q}}$               |  |
| $\ddot{\mathbf{u}} = \mathbf{F} \ \dot{\mathbf{q}}$            |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |

| November 5, 2002<br>SE 180: Earthquake Engineering                                              | Step 8 (continued)                |
|-------------------------------------------------------------------------------------------------|-----------------------------------|
| For example for a 2DOF structure, the                                                           | first floor response is (Fig. 11) |
| $\mathbf{u}_1 = \mathbf{f}_{11} \mathbf{q}_1 + \mathbf{f}_{12} \mathbf{q}_2$                    | (Equation 11)                     |
| $\dot{\mathbf{u}}_1 = \mathbf{f}_{11}\dot{\mathbf{q}}_1 + \mathbf{f}_{12}\dot{\mathbf{q}}_2$    | (Equation 12)                     |
| $\ddot{\mathbf{u}}_1 = \mathbf{f}_{11}\ddot{\mathbf{q}}_1 + \mathbf{f}_{12}\ddot{\mathbf{q}}_2$ | (Equation 13)                     |
|                                                                                                 |                                   |
|                                                                                                 |                                   |
|                                                                                                 |                                   |
|                                                                                                 |                                   |
|                                                                                                 | 47                                |

| November 5, 2002<br>SE 180: Earthquake Engineering                                              | Step 8 (continued) |
|-------------------------------------------------------------------------------------------------|--------------------|
| and the second floor response                                                                   | is (Fig. 12)       |
| $\mathbf{u}_2 = \mathbf{f}_{21}\mathbf{q}_1 + \mathbf{f}_{22}\mathbf{q}_2$                      | (Equation 14)      |
| $\dot{\mathbf{u}}_2 = \mathbf{f}_{21}\dot{\mathbf{q}}_1 + \mathbf{f}_{22}\dot{\mathbf{q}}_2$    | (Equation 15)      |
| $\ddot{\mathbf{u}}_2 = \mathbf{f}_{21}\ddot{\mathbf{q}}_1 + \mathbf{f}_{22}\ddot{\mathbf{q}}_2$ | (Equation 16)      |
| The first floor absolute accele                                                                 | ration is          |
| $\ddot{\mathbf{u}}_{1}^{\mathrm{T}} = \ddot{\mathbf{u}}_{1} + \ddot{\mathbf{u}}_{\mathrm{g}}$   | (Equation 17)      |
| The second floor absolute acc                                                                   | eleration is       |
| $\ddot{\mathbf{u}}_{2}^{\mathrm{T}} = \ddot{\mathbf{u}}_{2} + \ddot{\mathbf{u}}_{g}$            | (Equation 18)      |
|                                                                                                 | 48                 |



