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Class Notes: Earthquake Engineering, Ahmed Elgamal, September 25, 2001 (DRAFT) 

 
Numerical Solution of Equation of Motion 

 
 
 
Average Acceleration Method (Trapezoidal method) 
 

 
m a + c v + k d = f (t)                                          
 
In the above mass-spring-dashpot (damper) equation of motion, f (t) is the forcing function 
defined as given fi values at (ti) in which i = 0, 1, 2, … NTS (number of time steps), with the 
time step between any ti and ti+1 equal to ∆t, and m, c, k are the mass, damping and stiffness 
coefficients. 
 
Initial Conditions: d (t = 0) = d0 , and  v (t = 0) = v0 

 
From these conditions and the known f0 , you can find a (t = 0) = a0 from the Equation above  
 
At any time step t = ti+1:  m ai+1 + c vi+1 + k di+1 =  f i+1                                                         (Eq. 1) 
 
Now, we need to find  ai+1 , vi+1 , and di+1 , using f i+1 , and information from the previous time 
step (i.e., ai ,vi, and di) 
 
 
Average acceleration dictates that (see figure): 
 
 
a  =  (ai+1 + ai )  / 2                                                                                                               (Eq. 2) 
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Integrate to get velocity 
 
v = vi  + τ ( ai+1 + ai )  / 2                                                                                                      (Eq. 3) 
 
Integrate above to get displacement: 
 
d = di + vi  τ  +  (τ2 /4) ( ai+1 + ai )                                                                                         (Eq. 4) 
 

At the end of the Interval, τ =  ∆t and therefore (using Eqs. 3 and 4) 
 
vi+1 = vi  + (∆t/ 2) ( ai+1 + ai )                                                                                                    (Eq. 5) 
  
di+1 = di + vi  ∆t   +  (∆t 2 / 4) ( ai+1 + ai )                                                                                 (Eq. 6) 
 
 
Now, substitute Equations 5 and 6 into Equation 1 to get 
 
m ai+1  + c ( vi  + (∆t/ 2) ( ai+1 + ai ) ) + k ( di + vi  ∆t   +  (∆t 2 / 4) ( ai+1 + ai ) ) = fi+1         
 
or,  
 
(m + c (∆t / 2) + k (∆t2 / 4)) ai+1  = fi+1 – c ( vi  + (∆t/ 2) ai ) - k (di + vi  ∆t  +  (∆t 2 / 4)ai ) (Eq. 7) 
 
 
( where  [m + c (∆t / 2) + k (∆t2 / 4)] is known as the effective mass = m*) 
 
Solve Eq. 7 for ai+1, and (using Eqs. 4 and 5) solve for vi+1 , di+1   
 
 
Now all quantities are known at i +1 and we are ready to go to the next time step (repeat the 
above procedure).  
 
 
Summary for numerical implementation 
 
Define m, c, k, d0, v0, NTS, f (NTS), ∆t  
(note: the first stored value in the array f is f0) 
 
Declare arrays a(NTS), v(NTS), d(NTS), t(NTS) 
notes: 1. NTS is the number of time steps or the number of data points that constitute (define)  
              the forcing function f.  
          2. The arrays above for a, v, d, and t are declared now, but will be defined as the  
              calculations proceed. 
 
Find a0 =  ( f 0   -  c v0  -  k d0   ) /   m   
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Define t0 = 0.0 
 
Define the first entries in arrays a, v, d, and t to be a0, v0, d0, and t0, respectively. 
 
Define the effective mass 
 
m* = [m + c (∆t / 2) + k (∆t2 / 4)]  
 
Set i = 0 
 
Do while i less than NTS 
 
ai+1  =  {fi+1 – c ( vi  + (∆t/ 2)  ai  ) - k ( di + vi  ∆t   +  (∆t 2 / 4) ai  )}/ ( m + c (∆t / 2) + k (∆t2 / 4) )   
 
vi+1 = vi  + (∆t/ 2) ( ai+1 + ai ) 
 
di+1 = di + vi  ∆t   +  (∆t 2 / 4) ( ai+1 + ai )                                                    
 
ti+1 = ti + ∆t 
 
Store ai+1, vi+1, di+1, and ti+1 in next row of a, v, d, and t arrays respectively. 
 
Define i = i + 1 
 
Continue 
 
Now you have defined arrays a(NTS), v(NTS), d(NTS) and t(NTS) for plotting if you wish.. 
 
 
Predictor Multi-corrector Implementation 
 
Case of nonlinear Elastic-Perfectly Plastic Restoring Force 
 
We know that: 
 
vi+1 = vi  + (∆t/ 2) ( ai+1 + ai )                                                                    
 
di+1 = di + vi  ∆t   +  (∆t 2 / 4) ( ai+1 + ai )                                       
 
 
The equation is: 
 
m a + c v + fs = f (t)                                          
 
Define m, c, k, d0, v0, fmax, fmin, NTS, f (NTS), ∆t  
(note: the first stored value in the array f is f0) 
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Declare arrays a(NTS), v(NTS), d(NTS), fs(NTS), t(NTS) 
notes: 1. NTS is the number of time steps or the number of data points that constitute (define)  
              the forcing function f.  
          2. The arrays above for a, v, d, fs, and t are declared now, but will be defined as the  
              calculations proceed. 
 
fs0 = k d0 
If  fs0   greater than fmax, fs0 = fmax 
If  fs0   less than fmin, fs0 = fmin 
Find a0 =  ( f 0   -  c v0  -  fs0   ) /   m   
 
Define t0 = 0.0 
 
Define the first entries in arrays a, v, d, fs, and t to be a0, v0, d0, fs0, and t0, respectively. 
 
Set i = 0 
 
Do while i less than NTS 
 
1. Start with i = 0 
 
At t = ti+1:  m ai+1 + c vi+1 + fsi+1 =  f i+1 
 
Now, we need to find  ai+1 , vi+1 , and di+1 , using f i+1 , and information from the previous time 
step (i.e., ai ,vi, and di) 
 
 
 
2. Predictor Phase (start with the known components of vi+1 and di+1, i.e., all terms except those 
involving ai+1) 
 
vp

i+1 = vi  + (∆t/ 2) ai                                                                    
 
dp

i+1 = di + vi  ∆t   +  (∆t 2 / 4) ai 
 
vi+1 = vp

i+1 
 
 di+1 = dp

i+1  
 
ai+1 = 0 
 
Set iteration number n to zero (n = 0) 
 
3. Find residual force ∆f and tangent stiffness kt 
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kt = k 
fsi+1 = fsi + kt (di+1 – di) 
if  fsi+1  greater than fmax, fsi+1  = fmax and kt = 0 
if  fsi+1  less than fmin, fsi+1  = fmin and kt = 0 
 
 
∆f =   fi+1  - m ai+1  - c  vi+1  - fsi+1  
 
If n = 0 , ∆f0 = ∆f 
 
Check convergence tolerance (i.e., ∆f   is nearly zero already) 
Tol =    ( | ∆f   |  /  |  ∆f0  | )         (in which |   | denotes absolute value) 
 
If Tol less than or equal 10-5 (or similar small number) go to 6 
 
n = n + 1                                       
 
Form effective mass m* 
 
m* = [m + c (∆t / 2) + kt (∆t2 / 4)]  
 
4. Solve m* ∆ai+1 = ∆f           for ∆ai+1 
 
5. Corrector phase (add the remaining terms) 
 
ai+1 = ai+1 + ∆ai+1 
 
vi+1 = vp

i+1 + (∆t/2) ai+1  
 
di+1 = dp

i+1 + (∆t2/4) ai+1 
 
Go to step 3 
 
6. Now all quantities are known at i +1. Store ai+1, vi+1, di+1, fsi+1, and ti+1 in next row of a, v, d, fs, 
and t arrays respectively. We are ready to go to the next time step (i.e., i = i + 1, and go to 1).  
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Class Notes: Earthquake Engineering, Ahmed Elgamal, September 25, 2001 (DRAFT) 

 
Numerical Solution of Equation of Motion 

 
 
 
Linear Acceleration Method 
 

 
m a + c v + k d = f (t)                                          
 
In the above mass-spring-dashpot (damper) equation of motion, f (t) is the forcing function 
defined as given fi values at (ti) in which i = 0, 1, 2, … NTS (number of time steps), with the 
time step between any ti and ti+1 equal to ∆t, and m, c, k are the mass, damping and stiffness 
coefficients. 
 
Initial Conditions: d (t = 0) = d0 , and  v (t = 0) = v0 

 
From these conditions and the known f0 , you can find a (t = 0) = a0 from the Equation above  
 
At any time step t = ti+1:  m ai+1 + c vi+1 + k di+1 =  f i+1                                                       (Eq. 1.1) 
 
Now, we need to find  ai+1 , vi+1 , and di+1 , using f i+1 , and information from the previous time 
step (i.e., ai ,vi, and di) 
 
Linear acceleration dictates that (see figure): 
 
a = ai + (τ  / ∆t ) (ai+1 – ai ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Integrate to get velocity 
 
v = ai τ + (τ2  / 2∆t ) (ai+1 – ai ) + c1      ( c1 is a constant)             

ai 
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At τ = 0 , v = vi  (therefore c1 above is equal to vi), or  
 
v = ai τ + (τ2  / 2∆t ) (ai+1 – ai ) + vi                                                                                (Eq. 1.2) 
 
Integrate above to get expression for displacement: 
 
d = ai τ2 /2  + (τ3  / 6∆t ) (ai+1 – ai ) + vi τ  + c1 
 

At τ = 0 , d = di  (therefore c1 above is equal to di), or 
 
d = ai τ2 /2  + (τ3  / 6∆t ) (ai+1 – ai ) + vi  τ  + di                                                                    (Eq. 1.3) 
 

At the end of the Interval, τ =  ∆t and therefore (using Eqs. 1.2 and 1.3) 
 
vi+1 = ai ∆t + (∆t / 2 ) (ai+1 – ai )  + vi                                                                                        
 
or  
 
vi+1 =  vi + (∆t / 2 ) (ai+1 + ai )                                                                                               (Eq. 1.4) 
 
and 
 
di+1 =   di  + vi  ∆t + (∆t 2  / 6) ai+1 + (∆t 2  / 3) ai                                                                  (Eq. 1.5) 
 
 
Now, substitute Equations 1.4 and 1.5 into Equation 1.1 to get 
 
m ai+1  + c ( vi  + (∆t/ 2) ( ai+1 + ai )) + k (di + vi  ∆t   +  (∆t 2/ 6) ai+1 + (∆t 2 / 3) ai  ) = fi+1 (Eq. 1.6) 
 
or,  
 
(m + c (∆t / 2) + k (∆t2 / 6)) ai+1  = fi+1 – c ( vi  + (∆t/ 2) ai ) - k (di + vi  ∆t  +  (∆t 2 / 3)ai ) (Eq. 1.7) 
 
 
( where  [m + c (∆t / 2) + k (∆t2 / 6)] is known as the effective mass = m*) 
 
Solve Eq. 1.7 for ai+1, and (using Eqs. 1.4 and 1.5) solve for vi+1 , di+1   
 
 
Now all quantities are known at i +1 and we are ready to go to the next time step (repeat the 
above procedure).  
 
 
Summary for numerical implementation 
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Define m, c, k, d0, v0, NTS, f (NTS), ∆t  
(note: the first stored value in the array f is f0) 
 
Declare arrays a(NTS), v(NTS), d(NTS), t(NTS) 
notes: 1. NTS is the number of time steps or the number of data points that constitute (define)  
              the forcing function f.  
          2. The arrays above for a, v, d, and t are declared now, but will be defined as the  
              calculations proceed. 
 
Find a0 =  ( f 0   -  c v0  -  k d0   ) /   m   
 
Define t0 = 0.0 
 
Define the first entries in arrays a, v, d, and t to be a0, v0, d0, and t0, respectively. 
 
Define the effective mass 
 
m* = [m + c (∆t / 2) + k (∆t2 / 6)]  
 
Set i = 0 
 
Do while i less than NTS 
 
ai+1  =  {fi+1 – c ( vi  + (∆t/ 2)  ai  ) - k ( di + vi  ∆t   +  (∆t 2 / 3) ai  )}/ ( m + c (∆t / 2) + k (∆t2 / 6))   
 
vi+1 = vi  + (∆t/ 2) ( ai+1 + ai ) 
 
di+1 = di + vi  ∆t   +  (∆t 2 / 6) ai+1   +  (∆t 2 / 3) ai                                             
 
ti+1 = ti + ∆t 
 
Store ai+1, vi+1, di+1, and ti+1 in next row of a, v, d, and t arrays respectively. 
 
Define i = i + 1 
 
Continue 
 
Now you have defined arrays a(NTS), v(NTS), d(NTS) and t(NTS) for plotting if you wish.. 
 
 
 
Predictor Multi-corrector Implementation 
 
Nonlinear Elastic-Perfectly Plastic Restoring Force 
 
We know that: 
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vi+1 = vi  + (∆t/ 2) ( ai+1 + ai )                                                                    
 
di+1 = di + vi  ∆t   +  (∆t 2 / 6) ai+1 +   (∆t 2 / 3) ai                                      
 
 
The equation is: 
 
m a + c v + fs = f (t)                                          
 
Define m, c, k, d0, v0, fmax, fmin, NTS, f (NTS), ∆t  
(note: the first stored value in the array f is f0) 
 
Declare arrays a(NTS), v(NTS), d(NTS), fs(NTS), t(NTS) 
notes: 1. NTS is the number of time steps or the number of data points that constitute (define)  
              the forcing function f.  
          2. The arrays above for a, v, d, fs, and t are declared now, but will be defined as the  
              calculations proceed. 
 
fs0 = k d0 
If  fs0   greater than fmax, fs0 = fmax 
If  fs0   less than fmin, fs0 = fmin 
Find a0 =  ( f 0   -  c v0  -  fs0   ) /   m   
 
Define t0 = 0.0 
 
Define the first entries in arrays a, v, d, fs, and t to be a0, v0, d0, fs0, and t0, respectively. 
 
Set i = 0 
 
Do while i less than NTS 
 
1. Start with i = 0 
 
At t = ti+1:  m ai+1 + c vi+1 + fsi+1 =  f i+1 
 
Now, we need to find  ai+1 , vi+1 , and di+1 , using f i+1 , and information from the previous time 
step (i.e., ai ,vi, and di) 
 
2. Predictor Phase (start with the known components of vi+1 and di+1, i.e., all terms except those 
involving ai+1) 
 
vp

i+1 = vi  + (∆t/ 2) ai                                                                    
 
dp

i+1 = di + vi  ∆t   +  (∆t 2 / 3) ai 
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vi+1 = vp
i+1 

 
 di+1 = dp

i+1  
 
ai+1 = 0 
 
Set iteration number n to zero (n = 0) 
 
3. Find residual force ∆f and tangent stiffness kt 
 
kt = k 
fsi+1 = fsi + kt (di+1 – di) 
if  fsi+1  greater than fmax, fsi+1  = fmax and kt = 0 
if  fsi+1  less than fmin, fsi+1  = fmin and kt = 0 
 
∆f =   fi+1  - m ai+1  - c  vi+1  - fsi+1  
 
If n = 0 , ∆f0 = ∆f 
 
Check convergence tolerance (i.e., ∆f   is nearly zero already) 
Tol =    ( | ∆f   |  /  |  ∆f0  | ) 
 
If Tol less than or equal 10-5 (or similar small number) go to 6 
 
n = n + 1                                       
 
Form effective mass m* 
 
m* = [m + c (∆t / 2) + kt (∆t2 / 6)]  
 
4. Solve m* ∆ai+1 = ∆f           for ∆ai+1 
 
5. Corrector phase (add the remaining terms) 
 
ai+1 = ai+1 + ∆ai+1 
 
vi+1 = vp

i+1 + (∆t/2) ai+1  
 
di+1 = dp

i+1 + (∆t2/6) ai+1 
 
Go to 3 
 
6. Now all quantities are known at i +1. Store ai+1, vi+1, di+1, fsi+1, and ti+1 in next row of a, v, d, fs, 
and t arrays respectively. We are ready to go to the next time step (i.e., i = i + 1, and go to 1).  
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Notes 
 
1. For earthquake base excitation, f(t) is replaced by  -müg(t) where üg(t) is the time history of 
ground acceleration. All units must conform to those of this input acceleration (e.g., 
m/sec/sec). In this case, absolute acceleration is üabs = ( a + üg ). 
 
2. The above procedures apply to solutions of multi-degree of freedom (matrix) systems of 
equations. In this case, m, k, and c are replaced by M, K and C (NxN matrices, where N is 
number of degrees of freedom), and a, v, d, f, and so forth become vectors of size N. In the 
solution, a matrix inversion step will be needed, which can be conveniently performed using 
many readily available algorithms (please see any numerical analysis recipe book).  
 
3. The above average and linear acceleration methods are special cases of a general procedure 
known as the Newmark time integration procedure (see Chopra for more details). 
  
 
Optional Exercise (Use Average Acceleration Method) 
 
(See Note 1 above) 
 
1. Define m, k and c for a system of natural frequency ω (of your choice), and a damping of 5 %. 
Shake with ten cycles of a square wave base excitation (of your choice), and plot absolute 
acceleration and relative displacement (about 20 cycles), followed by 10 seconds of free 
vibration. Comment on the result (forced vibration phase, free vibration phase). Estimate 
damping from your answer using the logarithmic increment method (is it 5%?…, it should be). 
Check the natural period of your system as well. 
 
(Use suggested values of: m = 1.0, ω = 4 π, square wave of 4 cycles per second, input amplitude 
= 1.0, and ∆t = 0.0125 second). Hint: Add trailing zeros to your input excitation vector for the 
free vibration phase. 
 
2. Define m, k and c, fmax, fmin for a nonlinear elastic-perfectly plastic system (of a linear 
natural frequency ω of your choice), and a damping of 5 %. Shake with ten cycles of a square 
wave base excitation (of your choice), followed by 10 seconds of free vibration. Plot absolute 
acceleration, relative displacement, and fs versus relative displacement (about 10 cycles). The 
shaking amplitude should be high enough to result in nonlinear response. Comment on the result 
(forced vibration phase, free vibration phase). 
 
(Use suggested values of: m = 1.0, ω = 4 π, square wave of  4 cycles per second, input amplitude 
= 1.0, ∆t = 0.0125 second, fmax = 0.5 of ku(max) from problem 1 above, and fmin = -fmax). Hint: 
Add trailing zeros to your input excitation vector for the free vibration phase. 
 


