SE 180 Final Project

1

2 Story Shear Frame

2 Story Bending Beam

4

3 Story Bending Beam

Part 1: Determining the unknown mass of your structure

Step 1: Assemble the mass and stiffness matrices for your structure

For Example: Find m_2 , given m_1 , $L_1 = L_2 = h$, EI_c , & EI_b

Step 1: Mass and Stiffness

Matrices (continued)

7

Example (continued):

	m ₁	0	0	0	0	0
	0	^m 2	0	0	0	0
m =	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0

Determining the unknown mass of your structure

Step 2: Perform Static Condensation (if necessary)

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} k_{tt} & k_{t0} \\ k_{0t} & k_{00} \end{bmatrix} \qquad \hat{k}_{tt} = k_{tt} - k_{0t}^{T} k_{00}^{-1} k_{0t}$$

Example (continued):

$$k_{tt} = \begin{bmatrix} \frac{48 \cdot \text{E} \cdot \text{I}_{c}}{h^{3}} & \frac{-24 \cdot \text{E} \cdot \text{I}_{c}}{h^{3}} \\ \frac{-24 \cdot \text{E} \cdot \text{I}_{c}}{h^{3}} & \frac{24 \cdot \text{E} \cdot \text{I}_{c}}{h^{3}} \end{bmatrix} \qquad k_{0t} = \begin{bmatrix} 0 & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \\ 0 & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \\ 0 & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \\ \frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \\ \frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \\ \frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \\ \frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} & -\frac{6 \cdot \text{E} \cdot \text{I}_{c}}{h^{2}} \end{bmatrix} \qquad k_{00} = \begin{bmatrix} \frac{8 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{2 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{2 \cdot \text{E} \cdot \text{I}_{b}}{h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{2 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{2 \cdot \text{E} \cdot \text{I}_{b}}{h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{2 \cdot \text{E} \cdot \text{I}_{b}}{h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{2 \cdot \text{E} \cdot \text{I}_{b}}{h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & 0 & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{2 \cdot h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{b}}{h} \\ \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{2 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} + \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} & \frac{4 \cdot \text{E} \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text{E} \cdot \text{I}_{c}}{h} \\ \frac{4 \cdot \text$$

Step 2: Static Condensation (continued)

Example (continued):

$$\hat{\mathbf{k}}_{tt} = \mathbf{k}_{tt} - \mathbf{k}_{0t}^{\mathsf{T}} \mathbf{k}_{00}^{-1} \mathbf{k}_{0t} = \begin{bmatrix} 24 \cdot \mathbf{E} \cdot \mathbf{Ic} \cdot \frac{\left(32 \cdot \mathbf{Ic}^{2} + 63 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 18 \cdot \mathbf{Ib}^{2}\right)}{\left[\left(28 \cdot \mathbf{Ic}^{2} + 36 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right) \cdot \mathbf{h}^{3}\right]} - 24 \cdot \mathbf{E} \cdot \mathbf{Ic} \cdot \frac{\left(10 \cdot \mathbf{Ic}^{2} + 27 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right)}{\left[\left(28 \cdot \mathbf{Ic}^{2} + 36 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right) \cdot \mathbf{h}^{3}\right]} - 24 \cdot \mathbf{E} \cdot \mathbf{Ic} \cdot \frac{\left(10 \cdot \mathbf{Ic}^{2} + 27 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right) \cdot \mathbf{h}^{3}\right]}{\left[\left(28 \cdot \mathbf{Ic}^{2} + 36 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right) \cdot \mathbf{h}^{3}\right]} 24 \cdot \mathbf{E} \cdot \mathbf{Ic} \cdot \frac{\left(4 \cdot \mathbf{Ic}^{2} + 18 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right) \cdot \mathbf{h}^{3}}{\left[\left(28 \cdot \mathbf{Ic}^{2} + 36 \cdot \mathbf{Ic} \cdot \mathbf{Ib} + 9 \cdot \mathbf{Ib}^{2}\right) \cdot \mathbf{h}^{3}\right]} \end{bmatrix}$$

Where \hat{k}_{tt} is the condensed stiffness matrix

Determining the unknown mass of your structure

Step 3: Solve the Eigen-value problem to determine the determinant of

$$[k]-\omega^2[m]$$

Example (continued):

$$\left[k \right] - \omega^{2} \left[m \right] = \begin{bmatrix} 24 \cdot \mathrm{E} \cdot \mathrm{Ic} \cdot \frac{\left(32 \cdot \mathrm{Ic}^{2} + 63 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 18 \cdot \mathrm{Ib}^{2} \right)}{\left[\left(28 \cdot \mathrm{Ic}^{2} + 36 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right) \cdot \mathrm{h}^{3} \right]} - \omega^{2} \cdot \mathrm{m}1 & -24 \cdot \mathrm{E} \cdot \mathrm{Ic} \cdot \frac{\left(10 \cdot \mathrm{Ic}^{2} + 27 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right)}{\left[\left(28 \cdot \mathrm{Ic}^{2} + 36 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right) \cdot \mathrm{h}^{3} \right]} \\ -24 \cdot \mathrm{E} \cdot \mathrm{Ic} \cdot \frac{\left(10 \cdot \mathrm{Ic}^{2} + 27 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right)}{\left[\left(28 \cdot \mathrm{Ic}^{2} + 36 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right) \cdot \mathrm{h}^{3} \right]} & 24 \cdot \mathrm{E} \cdot \mathrm{Ic} \cdot \frac{\left(4 \cdot \mathrm{Ic}^{2} + 18 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right)}{\left[\left(28 \cdot \mathrm{Ic}^{2} + 36 \cdot \mathrm{Ic} \cdot \mathrm{Ib} + 9 \cdot \mathrm{Ib}^{2} \right) \cdot \mathrm{h}^{3} \right]} - \omega^{2} \cdot \mathrm{m}^{2} \cdot \mathrm{m}^{2} \end{bmatrix}$$

Step 3: Eigen-value Problem (continued)

Example (continued):

$$\left[\left[k \right] - \omega^2 \left[m \right] \right] =$$

 $\frac{\left(576 \cdot E^{2} \cdot Ic^{4} + 5184 \cdot Ic^{3} \cdot E^{2} \cdot Ib - 96 \cdot Ic^{3} \cdot \omega^{2} \cdot m1 \cdot h^{3} \cdot E - 768 \cdot Ic^{3} \cdot E \cdot \omega^{2} \cdot m2 \cdot h^{3} + 28 \cdot Ic^{2} \cdot \omega^{4} \cdot m1 \cdot h^{6} \cdot m2 - 432 \cdot Ic^{2} \cdot \omega^{2} \cdot m1 \cdot h^{3} \cdot E \cdot Ib + 5184 \cdot Ic^{2} \cdot E^{2} \cdot Ib^{2} - 1512 \cdot Ic^{2} \cdot E \cdot \omega^{2} \cdot m2 \cdot h^{3} \cdot Ib - 432 \cdot Ic \cdot E \cdot \omega^{2} \cdot m2 \cdot h^{3} \cdot Ib - 432 \cdot Ic \cdot E \cdot \omega^{2} \cdot m1 \cdot h^{3} \cdot E \cdot Ib^{2} + 36 \cdot Ic \cdot \omega^{4} \cdot m1 \cdot h^{6} \cdot m2 \cdot Ib + 9 \cdot \omega^{4} \cdot m1 \cdot h^{6} \cdot m2 \cdot Ib^{2} + 36 \cdot Ic \cdot Ib + 9 \cdot Ib^{2} \right)}{\left[h^{6} \cdot \left(28 \cdot Ic^{2} + 36 \cdot Ic \cdot Ib + 9 \cdot Ib^{2}\right)\right]}\right]$

Determining the unknown mass of your structure

Step 4: Plug the given values for m_1 , L_1 , L_2 , EI, & ω_1 into $\left| \left[[k] - \omega^2 [m] \right] \right| = 0$, and solve for the unknown mass.

Example (continued):

Given: $m_1 = 0.2 \text{ kg}$ $L_1 = 0.3048 \text{ m}$ $L_2 = 0.3048 \text{ m}$ $\text{EI} = 1.0889242 \text{ n-m}^2$ $\omega_1 = 12.566 \text{ rad/s}$ $\omega_2 = 86.013 \text{ rad/s}$

Step 4: Solve for unknown m (continued)

Example (continued):

Plug m₁, L₁, L₂, EI, &
$$\omega_1$$
 into $\left[[k] - \omega^2 [m] \right] = 0$

Solve for m₂

$$m_{2} = 24 \cdot E \cdot Ic \cdot \frac{\left(24 \cdot E \cdot Ic^{3} + 216 \cdot Ic^{2} \cdot E \cdot Ib - 4 \cdot Ic^{2} \cdot \omega_{1}^{2} \cdot m1 \cdot h^{3} - 18 \cdot Ic \cdot \omega_{1}^{2} \cdot m1 \cdot h^{3} \cdot Ib + 216 \cdot Ic \cdot E \cdot Ib^{2} - 9 \cdot \omega_{1}^{2} \cdot m1 \cdot h^{3} \cdot Ib^{2}\right)}{\left[h^{3} \cdot \omega_{1}^{2} \cdot \left(768 \cdot E \cdot Ic^{3} - 28 \cdot Ic^{2} \cdot \omega_{1}^{2} \cdot m1 \cdot h^{3} + 1512 \cdot Ic^{2} \cdot E \cdot Ib + 432 \cdot Ic \cdot E \cdot Ib^{2} - 36 \cdot Ic \cdot \omega_{1}^{2} \cdot m1 \cdot h^{3} \cdot Ib - 9 \cdot \omega_{1}^{2} \cdot m1 \cdot h^{3} \cdot Ib^{2}\right)\right]}$$

$$m_{2} = 0.949 \text{ kg}$$

Determining the unknown mass of your structure

Step 5: Perform a self-check on the value of the mass you just found

Plug the newly determined mass along with the remaining ω_i into $\left| \begin{bmatrix} k \end{bmatrix} - \omega^2 \begin{bmatrix} m \end{bmatrix} \right|$ and verify that the determinant

is still equal to zero

Example (continued):

 $\mathbf{m}_{2} = 24 \cdot \mathbf{E} \cdot \mathbf{Ic} \cdot \frac{\left(24 \cdot \mathbf{E} \cdot \mathbf{Ic}^{3} + 216 \cdot \mathbf{Ic}^{2} \cdot \mathbf{E} \cdot \mathbf{Ib} - 4 \cdot \mathbf{Ic}^{2} \cdot \omega_{2}^{2} \cdot \mathbf{m} \cdot \mathbf{h}^{3} - 18 \cdot \mathbf{Ic} \cdot \omega_{2}^{2} \cdot \mathbf{m} \cdot \mathbf{h}^{3} \cdot \mathbf{Ib} + 216 \cdot \mathbf{Ic} \cdot \mathbf{E} \cdot \mathbf{Ib}^{2} - 9 \cdot \omega_{2}^{2} \cdot \mathbf{m} \cdot \mathbf{h}^{3} \cdot \mathbf{Ib}^{2}\right)}{\left[\mathbf{h}^{3} \cdot \omega_{2}^{2} \cdot \left(768 \cdot \mathbf{E} \cdot \mathbf{Ic}^{3} - 28 \cdot \mathbf{Ic}^{2} \cdot \omega_{2}^{2} \cdot \mathbf{m} \cdot \mathbf{h}^{3} + 1512 \cdot \mathbf{Ic}^{2} \cdot \mathbf{E} \cdot \mathbf{Ib} + 432 \cdot \mathbf{Ic} \cdot \mathbf{E} \cdot \mathbf{Ib}^{2} - 36 \cdot \mathbf{Ic} \cdot \omega_{2}^{2} \cdot \mathbf{m} \cdot \mathbf{h}^{3} \cdot \mathbf{Ib} - 9 \cdot \omega_{2}^{2} \cdot \mathbf{m} \cdot \mathbf{h}^{3} \cdot \mathbf{Ib}^{2}\right)\right]}$

 $m_2 = 0.949 \text{ kg}$ (same as with $\omega_1 - \text{OK}!$)

Part 2: Modal Analysis

Step 1: Determine the Mode Shapes ϕ_n

$$(\mathbf{k} - \boldsymbol{\omega}^2 \mathbf{m})\mathbf{u} = \mathbf{0}$$

Equation 1

Continuing with the Eigen-value problem solution (again, Matlab does this, or by hand for a 2-dof system), for each ω_n we get an associated $\phi_n \leftarrow$ mode shape. To do this (for each identified ω_n), go ahead and substitute this ω_n for ω in Eq. 1 above. Upon this substitution, you can solve for the corresponding vector **u**, the components of which defines the mode shape ϕ_{n} . 15

Step 1: Mode Shapes (continued)

For the Previous example:

 $\omega_1 = 12.566 \text{ rad/s}$

$$\begin{bmatrix} 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(32 \cdot \text{Ic}^{2} + 63 \cdot \text{Ic} \cdot \text{Ib} + 18 \cdot \text{Ib}^{2}\right)}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - \omega 1^{2} \cdot \text{m1} \\ -24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(10 \cdot \text{Ic}^{2} + 27 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) - 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(10 \cdot \text{Ic}^{2} + 27 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(4 \cdot \text{Ic}^{2} + 18 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - \omega 1^{2} \cdot \text{m2}} = \begin{bmatrix} 1.397 \cdot 10^{3} - 581.566 \\ -581.566 - 242.065 \end{bmatrix}$$

$$\begin{bmatrix} 1.397 \cdot 10^3 & -581.566 \\ -581.566 & 242.065 \end{bmatrix} \cdot \begin{bmatrix} \phi & 11 \\ \phi & 21 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Let $\phi_{11} = 1.0$; therefore, $\phi_{21} = 2.402$

Step 1: Mode Shapes (continued)

Example (continued):

 $\omega_2 = 86.011 \text{ rad/s}$

$$\begin{bmatrix} 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(32 \cdot \text{Ic}^{2} + 63 \cdot \text{Ic} \cdot \text{Ib} + 18 \cdot \text{Ib}^{2}\right)}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - \omega 2^{2} \cdot \text{m1} - 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(10 \cdot \text{Ic}^{2} + 27 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right)}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(10 \cdot \text{Ic}^{2} + 27 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - 24 \cdot \text{E} \cdot \text{Ic} \cdot \frac{\left(4 \cdot \text{Ic}^{2} + 18 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}}{\left[\left(28 \cdot \text{Ic}^{2} + 36 \cdot \text{Ic} \cdot \text{Ib} + 9 \cdot \text{Ib}^{2}\right) \cdot \text{h}^{3}\right]} - \omega 2^{2} \cdot \text{m2}} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566 \\ -581.566 - 6.629 \cdot 10^{3} \end{bmatrix} = \begin{bmatrix} -50.933 - 581.566$$

$$\begin{bmatrix} -50.933 & -581.566 \\ -581.566 & -6.629 \cdot 10^3 \end{bmatrix} \cdot \begin{bmatrix} \phi & 12 \\ \phi & 22 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Let $\phi_{12} = 1.0$; therefore, $\phi_{22} = -0.0876$

Example (continued):

Step 1: Mode Shapes (continued)

First Mode

Second Mode

Part 2: Modal Analysis

Step 2: Determine the Modal Participation Factors $\frac{L_i}{M_i}$

Step 2: Modal Participation Factors (continued)

Example (continued):

$$M_{i} = \sum_{j=1}^{NDOF} m_{j} \varphi_{ji}^{2}$$

 $M_{1} = m_{1} \Phi_{11}^{2} + m_{2} \Phi_{21}^{2} = (0.2)(1)^{2} + (0.949)(2.402)^{2} = 5.67535 \text{ kg}$ $M_{2} = m_{1} \Phi_{12}^{2} + m_{2} \Phi_{22}^{2} = (0.2)(1)^{2} + (0.949)(-0.0876)^{2} = 0.20728 \text{ kg}$

$$L_{i} = \underset{j=1}{\overset{\text{NDOF}}{\sum}} m_{j} \varphi_{ji}$$

 $L_{1} = m_{1}\phi_{11} + m_{2}\phi_{21} = (0.2)(1) + (0.949)(2.402) = 2.4795 \text{ kg}$ $L_{2} = m_{1}\phi_{12} + m_{2}\phi_{22} = (0.2)(1) + (0.949)(-0.0876) = 0.11687 \text{ kg}$

Step 2: Modal Participation Factors (continued)

Example (continued):

$$\frac{L_1}{M_1} = \frac{2.4795 \text{ kg}}{5.67535 \text{ kg}} = 0.437$$

$$\frac{L_2}{M_2} = \frac{0.11687 \text{ kg}}{0.20728 \text{ kg}} = 0.563$$

Part 2: Modal Analysis

Step 3: Determine K_i

$$K_i = \omega_i^2 M_i$$

$$K_1 = \omega_1^2 M_1 = (12.566)^2 (5.67535) = 896.1625$$

 $K_2 = \omega_2^2 M_2 = (86.011)^2 (0.20728) = 1533.435$

Part 2: Modal Analysis

Step 4: Add Damping

Now, you can add any modal damping you wish (which is another big plus, since you control the damping in each mode individually). If you choose $\zeta_i = 0.02$ or 0.05, the equations become:

$$\ddot{q}_i + 2\xi_i \omega_i \dot{q}_i + \omega_i^2 q_i = -\frac{L_i}{M_i} \ddot{u}_g, \ i = 1, 2, ... \text{NDOF}$$

Part 2: Modal Analysis

Step 5: Solve for $q_i(t)$

Solve for $q_i(t)$ in the above uncoupled equations (using a SDOF-type program), and the final solution is obtained from:

$$u = \Phi q$$

$$\dot{u} = \Phi \dot{q}$$

$$\ddot{u} = \Phi \ddot{q}$$

$$\ddot{u}^{t} = \ddot{u} + 1\ddot{u}_{g}$$

Step 5: Solve for q_i(t) (continued)

We will solve for $q_i(t)$ using a modified version of the spreadsheet for solving for the response of a SDOF system using Newmark's Method

Part 3: Spreadsheet for Modal Analysis

Step-By-Step Procedure For Setting Up A Spreadsheet For Using Newmark's Method and Modal Analysis To Solve For The Response Of A Multi-Degree Of Freedom (MDOF) System

Start with the equation of motion for a linear multi-degree of freedom system with base ground excitation:

 $\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\mathbf{1}\ddot{\mathbf{u}}_{g}$

Using Modal Analysis, we can rewrite the original coupled matrix equation of motion as a set of un-coupled equations.

$$\ddot{q}_i + 2\zeta \omega \dot{q}_i + \omega_i^2 q_i = -\frac{L_i}{M_i} \ddot{u}_g$$
, $i = 1, 2, ..., NDOF$

with initial conditions of $d_i(t=0) = d_{i_0}$ and $v_i(t=0) = v_{i_0}$

Note that total acceleration or absolute acceleration will be

$$\ddot{q}_{iabs} = \ddot{q}_i + \ddot{u}_g$$

We can solve each one separately (as a SDOF system), and compute histories of q_i and their time derivatives. To compute the system response, plug the q vector back into $\mathbf{u} = \mathbf{\Phi}\mathbf{q}$ and get the u vector (and the same for the time derivatives to get velocity and acceleration).

The beauty here is that there is no matrix operations involved, since the matrix equation of motion has become a set of un-coupled equation, each including only one generalized coordinate q_n .

In the spreadsheet, we will solve each mode in a separate worksheet.

Analysis.

Step 1 - Define System Properties and Initial Conditions for First Mode

- (A)Begin by setting up the cells for the Mass, Stiffness, and Damping of the SDOF System (Fig. 1). These values are known.
- (B) Set up the cells for the modal participation factor $\frac{L_i}{M_i}$ and mode shape ϕ_i (Fig. 1). These values must be determined in advance using Modal

(C) Calculate the Natural Frequency of the SDOF system using the equation

$$\omega_i = \sqrt{K_i/M_i}$$
 (Equation 1)

Note: If the system damping is given in terms of the Modal Damping Ratio (ζ_i) then the Damping (C_i) can be calculated using the equation:

 $C_i = 2 \zeta_i \omega_i M_i$ (Equation 2)

(D) Set up the cells for the 2 Newmark Coefficients $\alpha \& \beta$ (Fig. 1), which will allow for performing

a) the Average Acceleration Method, use $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{6}$. b) the Linear Acceleration Method, use $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{4}$.

(E) Set up cells (Fig. 1) for the initial displacement and velocity (d_o and v_o respectively)

Step 1 (continued)

N	licrosoft E	xcel - Copy	of Newma	rkMethod M	odal Analy	sis.xls								[_ 8 ×
	<u>File E</u> dit	⊻iew Inser	t F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata <u>y</u>	<u>M</u> indow <u>H</u> e	lp Acro <u>b</u> at								1	- 8 ×
	🛩 日	a 🕽 🖉	× 🛷 🗠	- 24 🛍	, 100% ·	• *	Arial	• 10 •	BI	<u>u</u> ≡ ≡	≣ ፼ \$ %	00. 0.↓ 0.↓ 00. ℓ	€≣∙≣	🖂 • 👌 •	<u>A</u> - ,
1 📆	7														
_	A1	+	=												
	Α	B	С	D	E	F	G	Н	1	J	K	L	M	N	
1						_									
2						Fi	rst Mode								
3	M ₁ =	1	kg												
4	K1 =	276.52	N/m			_	_								
5	C1 =	0.109758	N-s/m												
6	$L_1/M_1 =$	0.74													
7	φ ₁₁ =	1	E	Equation	on 2										
8	φ ₂₁ =	1.574		1											
9		10 0000	red/e												
11	ω ₁ -	2 64667	rau/s												
12	τ <u>η</u> -	0.0033				,									
13	 	0.0000		Equati	on 1										
14	1			1	-										
15	New	mark Coeff	icients												
16	α=	0.5													
17	S=	U. 166667													
19															
20	In	itial Condit	ions												
21	d _o =	0	m												
22	v _o =	0	m												
23															
25															
26															
27														-	
28															
30															
31		st Mode /								4					▼
Rea	idy														

Figure 1: Spreadsheet After Completing Step 1

Step 2 – Set Up Columns for Solving The Equation of Motion Using Newmark's Method

Place a cell (Fig. 2) for the time increment (Δt).

Place columns (Fig. 2) for the time, base excitation, applied force divided by mass, relative acceleration, relative velocity, and relative displacement.

Step 2 (continued)

^B Ele Edt Yew Insert Format Iools Data Window Help Acrobat	_ <u> </u>
〕 ☞ 目 ⑤ ① ♡ ◇ ♡ ・ ☆ ∭ 100% ・ ♡ Arial • 10 • B / U ■ ■ ■ \$ % , : 8 :30 ∉ ∉ ⊞ • ⊘	· <u>A</u>
A B C D E F G H I J K L M N	
3 $M_1 = 1$ kg Δt t(sec) $u_g \left[-L_1/M_1/\dot{u}_g - \dot{q}_i - \dot{q}_i - \dot{q}_i \right]$	
4 K ₁ = 276.52 N/m 0.01 T T T	
5 C1 = 0.109758 N-s/m	
$7 \phi_{11} = 1$ Base Excitation	
11 6 26465 Hars Applied Force Divided By Mass	
A Relative Acceleration	
15 Newmark Coefficients	
16 α 0.5	
19	
20 Initial Conditions	
21 d ₀ = 0 m Relative Displacement	
24	
26	
27	
IN CLIP IP/LISE FIDUE / Dath	

Figure 2: Spreadsheet After Completing Step 2

> Step 3 – Enter the Time t & Applied Force f(t) into the Spreadsheet $t_{i+1} = t_i + \Delta t$ (Equation 3) (Fig. 3)

For the earthquake problem (acceleration applied to base of the structure), the applied force divided by the mass is calculated using:

$$\frac{f_{i}(t)}{M_{1}} = -\frac{L_{1}}{M_{1}}\ddot{u}_{g_{i}}$$
 (Equation 4) (Fig. 3)

where, \ddot{u}_{g_i} is the applied base acceleration at step i. (Typically this is the base excitation time history)

> Check the units of the input motion file. They must be compatible with the units of the mass, stiffness, and damping!

Step 3 (continued)

Mi	crosoft E	xcel - Copy	of Newmark	Method Mo	dal Analys	is.xls								_	. 8 ×
📳 E	ile <u>E</u> dit	<u>V</u> iew <u>I</u> nsert	Format Too	ols <u>D</u> ata <u>W</u>	indow <u>H</u> elp	Acro <u>b</u> at								_	. 8 ×
lD	2 🔛	a 🕽 🕹	🚿 🔊 ·	- 21 🛍	100% -		ial	• 10 •	B I	<u>n</u> ≡ ≡ =	\$ %	00. 0.+ 0.+ 00. €	t≢ t≢ [🛛 • <u> </u> •	<u>A</u> - ,
	r i														
_	H4	•	= =-\$B\$8	5*G4											
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	
1															
2						Firs	t Mode				1				
3	M1 =	1	kg		∆t	t(sec)	ü	$(-L_1/M_1)\ddot{u}_g$	q _i	q _i	qi				
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	L.						
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854							
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502							
7	φ ₁₁ =	1		/		0.03	0.075961	-0.056211422		Equatio	n 1				
8	φ ₂₁ =	1.574	E	tion	2	0.04	0.067595	-0.050020003		Equain					
9	, = :		EC	uation	13	0.05	0.067458	-0.049919279							
10	ω1 =	16.62889	rad/s			0.06	0.065777	-0.048674691							
11	f ₁ =	2.64657	Hz			0.07	0.063504	-0.046993152							
12	Հլ =	0.0033				0.08	0.061549	-0.045545991							
13	m1 =	1.005157				0.09	0.060357	-0.044664359							
14						0.1	0.060173	-0.044528165							-
3988						39.84	0.002425	-0.001794516							
3989						39.85	0.002226	-0.001646889							
3990						39.86	0.002042	-0.001511349							
3991						39.87	0.001873	-0.001385769							
3992						39.88	0.001723	-0.001274874							
3993						39.89	0.001598	0.001182338							
3995						39.91	0.001430	-0.001044432							
3996						39.92	0.00134	-0.000991816							
3997						39.93	0.001281	-0.000947591							
3998						39.94	0.00123	-0.000910024							
3999						39.95	0.001183	-0.000875614							
4000						39.96	0.001134	0.0007055				-			
4001						39.97	0.001075	-0.0007935							
4003						39.99	0.000928	-0.000686691							
4004									<u> </u>						Ī
4	▶ ▶ \1s	t Mode /								•					
Read	ly										Sum=0.0240460	348			

Figure 3: Spreadsheet After Completing Step 3

Step 4 – Compute Initial Values of the Relative Acceleration, Relative Velocity, Relative Displacement, and Absolute Acceleration

(A) The Initial Relative Displacement and Relative Velocity are known from the initial conditions (Fig. 4).

 $q(t=0) = d_o$ (Equation 5)

 $\dot{q}(t=0) = v_o$ (Equation 6)

(B) The Initial Relative Acceleration (Fig. 4) is calculated using

$$\ddot{q}(t=0) = -\frac{Li}{Mi}\ddot{u}_{g} - 2\zeta\omega v_{o} - \omega^{2}d_{o} \quad (Equation 7)$$

Step 4 (continued)

M	icrosoft E	xcel - Copy	of Newmai	rkMethod M	iodal Analy	sis.xls											<u>_ 8 ×</u>
	<u>File E</u> dit	⊻iew Insert	: F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata <u>V</u>	<u>W</u> indow <u>H</u> el	p Acro <u>b</u> at											<u>_ 8 ×</u>
	🖻 🖬	🖨 🖪 💖	1 🝼 🔊	- 🛃 🛍	100%	• *	Arial	▼ 10	BI	U			\$ %	•.0 .0 •.• 00. €	3 🔃 🚛	🛄 + 🔕 ·	• <mark>A</mark> • .
	1																
	031	v	=														
	A	B	С	D	E	F	G	Н			J	ł	<	L	М	N	-
1			-		_		-			_							
2						Fin	t Mode										
3	M1 =	1	kg		∆t	t(sec)	üg	$(-L_1/M_1)\ddot{u}_g$	 q _i		\dot{q}_i	q_i					
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	0.046483	}	0	()				
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854	▲			≜	•				
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502									
7	φ ₁₁ =	1				0.03	0.075961	-0.056211422									
8	$\phi_{21} =$	1.574				0.04	0.067595	-0.050020003									
9						0.05	0.067458	-0.049919279									
10	ω1 =	16.62889	rad/s			0.06	0.065777	-0.048674691									
11	f ₁ =	2.64657	Hz			0.07	0.063504	-0.046993152									
12	ζ1 =	0.0033				0.08	0.061549	-0.045545991									
13	m1 * =	1.005157				0.09	0.060357	-0.044664359				E	mati	on 5			
14						0.1	0.060173	-0.044528165					լսոս				
15	New	mark Coeff	icients			0.11	0.060825	-0.045010552									
16	α=	0.5				0.12	0.061601	-0.045584633				. ,	-				
17	β=	0.166667				0.13	0.061857	-0.045773878			guat	on 6)				
18						0.14	0.061563	-0.045556597			•						
19						0.15	0.06112	-0.045228799									
20	In	itial Conditi	ions			0.16	0.060828	-0.045012432									
21	d _o =	0	m			0.17	0.060709	-0.044924986	Eqi	iat	ion 7						
22	v ₀ =	0	m			0.10	0.060653	-0.044003375									
23						0.19	0.060541	-0.044800393									
24						0.2	0.060319	-0.044636076									
25						0.21	0.060005	-0.04440355									
26						0.22	0.059668	-0.044154408									
27						0.23	0.059424	-0.043973866									
28						0.24	0.059387	-0.043946302									
29						0.25	0.059559	-0.044073342									
30						0.26	0.059832	-0.04427556									
31		t Mode				I 0.27	1.0.060157	I-0.044516398	1	la l		1		1			l a f
Doo	do No	n noue /								-1-1			_				

Figure 4: Spreadsheet After Completing Step 4

Step 5 – Compute Incremental Values of the Relative Acceleration, Relative Velocity, Relative Displacement, and Absolute Acceleration At Each Time Step (Fig. 5)

(A)

$$\ddot{q}_{i+1} = \frac{\left[-\frac{L_1}{M_1}\ddot{u}_{g_{i+1}} - C_1\left(\frac{\Delta t}{2}\ddot{q}_i + \dot{q}_i\right) - K_1\left(\frac{1}{2}\Delta t^2(1-2\beta)\ddot{q}_i + \Delta t\dot{q}_i + q_i\right)\right]}{m_1 *} \quad (Equation 8)$$

$$\dot{q}_{i+1} = \ddot{q}_i\Delta t(1-\alpha) + \ddot{q}_{i+1}\Delta t\alpha + \dot{q}_i \quad (Equation 9)$$

$$q_{i+1} = \ddot{q}_i \frac{\Delta t^2}{2} (1 - 2\beta) + \ddot{q}_{i+1} \Delta t^2 \beta + \dot{q}_i \Delta t + q_i \qquad (Equation 10)$$

Where, the effective mass, $m_1^* = M_1 + C_1 \Delta t \alpha + K_1 \Delta t^2 \beta$

Step 5 (continued)

	licrosoft E	xcel - Copy	of Newma	rkMethod M	lodal Ana	ysis.xls												
l	File Edit	⊻iew Insert	t Format	Loois <u>D</u> ata	Window H	leip Acrobat												
D	🖻 🖬	🖨 🖪 Ϋ	* 💅 🗠	• - 🛃 🛍	100%	• *	Arial	▼ 10	• B	I	<u>n</u> 📄 🗄	F 3		\$%	00. 0.+ 0.+ 00. ℓ	律律	🖂 🕶 🖄 ·	• 🚣 • :
	73																	
	031	•	=															
	Δ	B	0	D	F	F	G	Н		1	. I			K		M	N	-
1		0	Ŭ											IX .		141		
2						Fit	st Mode											
3	M1 =	1	kg		Δt	t(sec)	üg	$(-L_1/M_1)\ddot{u}_g$	ä	i	ġ _i		q	i				
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	0.048	6483	0			0				
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854	0.043	3089	0.000447	786	2.267	59E-06				
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502	-					f				
7		1				0.02	0.075961	-0.056211422							1			
8	φn = 	1.674			-	0.03	0.067595	.0.0500211422										
0	φ21 -	1.374				0.04	0.007355	-0.030020003										
10	(a) =	16 60000	rod/o			0.05	0.007430	0.049573275										
10	ω ₁ -	0.02003	140/5			0.00	0.000777	-0.040074031										
11	11=	2.64657	ΠZ			0.07	0.063504	-0.046993152										
12	ζ ₁ =	0.0033				0.08	0.061549	-0.045545991										
13	m1 =	1.005157				0.09	0.060367	-0.044664369					Fa	matic	n 10			
14	NI	10 0				0.1	0.060173	-0.044528165					Ľų	uuit				
15	INEW	mark Coeπ	icients 1			0.11	0.060825	-0.045010552										
10	0x =	0.5				0.12	0.061601	0.045564633						_				
17	- 0	0.100007				0.13	0.001007	0.045773070			Equ	ati	on (→—				
19						0.14	0.001303	-0.0453300337			Lyu	au	011 ,					
20	In	itial Conditi	ions			0.15	0.060828	-0.045012432										
21	do =	0	m			0.17	0.060709	-0.044924986										
22		0	m			0.10	0.060653	-0.044003375	İΓ	้อม	ation	8			1			
23	.0					0.19	0.060541	-0.044800393		чu	auon	0						
24						0.10	0.060319	-0.044636076	+						1			
25						0.21	0.060005	-0.04440355										
26						0.27	0.059668	-0.044154408							1			
27						0.23	0.059424	-0.043973866							1			
28						0.24	0.059387	-0.043946302							1			
29						0.25	0.059559	-0.044073342										
30						0.26	0.059832	-0.04427556										
31						0.27	0.060157	l-0 044516398		_					1			
		st Mode /									•							
Kea	idγ																	

Figure 5: Spreadsheet with values for the Relative Acceleration, Relative Velocity, and Relative Displacement at Time Step 1

Step 5 (continued)

(B) Then, highlight columns I, J, & K and rows 4 through to the last time step (in this example 4003) and "Fill Down" (Ctrl+D).

See Figures 6 and 7.

M 10	licrosoft E	xcel - Copy	of Newmar	kMethod M	odal Analysi	s.xls								[_ 8 ×
	<u>File E</u> dit	⊻iew Insert	t F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata y	<u>M</u> indow <u>H</u> elp	Acro <u>b</u> at								1	<u>- 8 ×</u>
	🛩 日	a 🖪 🗳	× 🛷 🔊	- 21 M	100% -	» •	Arial	- 10	- B I	<u>u</u> = = =	■ ■ \$ %	•.0 .00 •.€ 00. €	f≡ f≡	🔄 + 🕭 +	<u>A</u>
📆	1														_
] 122	14003	v I	-												
	Δ	B	-	D	F	F	G	Н			ĸ		M	N	—
1		0			L						ĸ	L.	191	14	<u> </u>
2						Fir	st Mode								
з	M1 =	1	kg		∆t	t(sec)	üg	$(-L_1/M_1)\ddot{u}_g$	q _i		qi				
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	0.046483	0	0				
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854	0.043089	0.00044786	2.26759E-06				
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502							
7	φ ₁₁ =	1				0.03	0.075961	-0.056211422							
8	φ ₂₁ =	1.574				0.04	0.067595	-0.050020003							
9	,					0.05	0.067458	-0.049919279	<u> </u>						
10	ω1 =	16.62889	rad/s			0.06	0.065777	-0.048674691							
11	f1 =	2.64657	Hz			0.07	0.063504	-0.046993152							
12	۲, =	0.0033				0.08	0.061549	-0.045545991	.						
13	m,* =	1.005157				0.09	0.060357	-0.044664359							
14						0.1	0.060173	-0.044528165							
15	New	mark Coeff	icients			0.11	0.060825	-0.045010552							
16	α=	0.5				0.12	0.061601	-0.045584633	ļ						
17	β=	0.166667				0.13	0.061857	-0.045773878							
18						U.14	0.061563	-0.045556597							
19						0.15	0.06112	-0.045228799							
20	In	itial Conditi	ions			0.16	0.060828	-0.045012432							
21	do =	0	m			0.17	0.060709	-0.044924986							
22	ν ₀ =	0	m			0.18	0.060653	-0.044003375							
23						0.19	0.060541	-0.044800393							
24						0.2	0.060319	-0.0446360/6							
20						0.21	0.060005	-0.04440355							
20						0.22	0.059668	0.044154408							+
22						0.23	0.000424	-0.043973000							
20						0.24	0.0000007	-0.040340302							+-
30						0.25	0.059832	-0.04407556					L		
31						0.20	0.060157	-0.044516398	i .					-	
		st Mode /								•					
Rea	idy										Sum=0.043538	792			

Figure 6: Highlighted Cells

Step 5 (continued)

Mi	crosoft Ex	cel - Copy o	of Newmark	Method Mo	dal Analysis	s.xls								_	. 8 ×
) 🖳 E	jile <u>E</u> dit <u>y</u>	/iew Insert	Format <u>T</u> oo	ols <u>D</u> ata <u>W</u>	indow <u>H</u> elp	Acro <u>b</u> at								-	. 8 ×
] 🗅 i	🛎 🖬 🖗	ᢖ 🖪 🚏	🚿 🔊 -	• 👌 🛍	100% -	🎇 🕹 Ari	ial	• 10 •	BI	I 🖹 🗮 🗏	\$ %	00. 0.↓ 0.↓ 00. g	€≢ €≡	📃 + 🖄 +	<u>A</u>
	7														
	15	v	= =(H5-\$	B\$5*(\$E\$4/	/2*I4+J4)-\$E	B\$4*(\$E\$4^)	2/2*(1-2*\$B	\$17)*I4+\$E\$4*.	J4+K4))/\$B	\$13					
	A	В	C	D	E	F	G	H	1	J	K	L	M	N	
1															
2						Firs	t Mode	1							
3	M1 =	1	kg		∆t	t(sec)	üg	$(-L_1/M_1)\ddot{u}_g$	äi	q _i	qi				
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	0.046483	0	0				
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854	0.043089	0.00044786	2.26759E-06	1			
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502	-0.00615	0.00063253	8.0799E-06	1			
7	φ ₁₁ =	1				0.03	0.075961	-0.056211422	-0.0599	0.00030229	1.32018E-05	1			
8	φ ₂₁ =	1.574				0.04	0.067595	-0.050020003	-0.05368	-0.00026558	1.33335E-05	1			
9	,					0.05	0.067458	-0.049919279	-0.05205	-0.00079422	8.02099E-06	1			
10	ω1 =	16.62889	rad/s			0.06	0.065777	-0.048674691	-0.04785	-0.00129374	-2.45378E-06				
11	f ₁ =	2.64657	Hz			0.07	0.063504	-0.046993152	-0.04191	-0.00174257	-1.76849E-05	1			
12	ζ ₁ =	0.0033				0.08	0.061549	-0.045545991	-0.03506	-0.00212741	-3.70919E-05	1			
13	m,* =	1.005157				0.09	0.060357	-0.044664359	-0.02781	-0.00244172	-5.99979E-05	ĺ			
14						0.1	0.060173	-0.044528165	-0.02054	-0.00268345	-8.56843E-05	1			-
3989						39.85	0.002226	-0.001646889	-0.63618	0.10993343	0.002251087				
3990						39.86	0.002042	-0.001511349	-0.92903	0.10210736	0.003313732	ĺ			
3991						39.87	0.001873	-0.001385769	-1.19601	0.09148214	0.004283904	j			
3992						39.88	0.001723	-0.001274874	-1.42981	0.07835302	0.005135028]			
3993						39.89	0.001598	-0.001182338	-1.62404	0.06308374	0.00584383				
3994						39.9	0.001496	-0.001106884	-1.7734	0.04609653	0.006390976				
3995						39.91	0.001411	-0.001044432	-1.87382	0.02786044	0.006761598				
3996						39.92	0.00134	-0.000991816	-1.92259	0.00007039	0.006945699				
3997						39.93	0.001281	-0.000947591	-1.91843	-0.0103267	0.006938422				
3998						39.94	0.00123	-0.000910024	-1.8615	-0.02922632	0.006740183				
3999						39.95	0.001103	0.000070014	1.60702	-0.04730093	0.005709500	-			
4000						39.90	0.001134	-0.000030391	-1.59725	-0.06405419	0.005796369				+-
4001						39.98	0.001075	-0.0007300	-1.15906	-0.0918082	0.000001490	1			+
4002						39.99	0.000928	-0.000686691	-0.88923	-0.10204963	0.003253802	1			+
4004						00.00	0.000020	0.00000000	0.00020	0.10204000	0.000200002	ä			
4005		_													
	▶ ▶ \1st	Mode /							1						
Door	ly.										Sum10 36093	541			

Figure 7: Spreadsheet After "Filling Down" Columns I through K

Step 6 – Create Additional Worksheet for Second Mode

Make a copy of the "1st Mode" worksheet by right clicking on the "1st Mode" tab and selecting "<u>M</u>ove or Copy" (Fig. 8)

N	1icrosoft I	xcel - Copy	of Newmar	kMethod M	odal Analys	is.xls									<u>_ 8 ×</u>
	<u>File E</u> dit	<u>V</u> iew <u>I</u> nsert	t F <u>o</u> rmat <u>T</u> e	ools <u>D</u> ata <u>V</u>	<u>V</u> indow <u>H</u> elp	Acro <u>b</u> at									_ 8 ×
	🚔 日	🖨 🖪 🖑	× 🛷 🖍	- 21 M	100% -	» 4	vrial	• 10 •	BI	U E E 3	■ ■ \$ %	• • 0 • 00	€≣ €≣	- 🔿 -	<u>A</u>
. 					-				- 1	-)-					
] [2		-	/45	0005*/0C0	4 (*) *1 4 + 1 4 \ Ø		a⊐/⊐*/1 (1*£)	D017*\4+0C04;	* 14 (124))(@E	0010					
	CI A		(4040 (404)	+/2 14+04)-4 E	D 04 (0C 04	-272 (1-2 øl	니 비	јаткајра∟	5015	ĸ	1	м	N	
1		U	U	U	L		9			J	n	L	191	IN	<u> </u>
2						Firs	t Mode								
3	M1 =	1	kg		∆t	t(sec)	üg	$(-L_1/M_1)\ddot{u}_g$		q _i	q_i				
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	0.046483	0	0				
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854	0.043089	0.00044786	2.26759E-06				
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502	-0.00615	0.00063253	8.0799E-06				
7	φ ₁₁ =	1				0.03	0.075961	-0.056211422	-0.0599	0.00030229	1.32018E-05				
8	φ ₂₁ =	1.574				0.04	0.067595	-0.050020003	-0.05368	-0.00026558	1.33335E-05				
9	121					0.05	0.067458	-0.049919279	-0.05205	-0.00079422	8.02099E-06				
10	ω ₁ =	16.62889	rad/s			0.06	0.065777	-0.048674691	-0.04785	-0.00129374	-2.45378E-06				
11	f ₁ =	2.64657	Hz			0.07	0.063504	-0.046993152	-0.04191	-0.00174257	-1.76849E-05				
12	ر =	0.0033				0.08	0.061549	-0.045545991	-0.03506	-0.00212741	-3.70919E-05				
13	m,*=	1.005157				0.09	0.060357	-0.044664359	-0.02781	-0.00244172	-5.99979E-05				
14						0.1	0.060173	-0.044528165	-0.02054	-0.00268345	-8.56843E-05				
15	New	mark Coeff	icients			0.11	0.060825	-0.045010552	-0.01333	-0.00285281	-0.000113426				
16	α=	0.5				0.12	0.061601	-0.045584633	-0.00586	-0.00294877	-0.000142496				
17	β=	0.166667				0.13	0.061857	-0.045773878	0.002153	-0.00296729	-0.000172143				
18						0.14	0.061563	-0.045556597	0.0105	-0.00290403	-0.000201569				
19						0.15	0.06112	-0.045228799	0.018659	-0.00275823	-0.000229948				
20	In	itial Conditi	ions			0.16	0.060828	-0.045012432	0.026185	-0.00253401	-0.000256472				
21	do =	0	m			0.17	0.060709	-0.044924986	0.032855	-0.00223881	-0.000280392				
22	v ₀ =	0	m			0.10	0.060653	-0.044003375	0.038567	-0.0010017	-0.000301042				
23						0.19	0.060541	-0.044800393	0.043254	-0.00147259	-0.000317853				
24						0.2	0.060319	-0.044636076	0.046826	-0.00102219	-0.000330356				
25		Inse	ert			0.21	0.060005	-0.04440355	0.049174	-0.00054219	-0.000338198				
26		Dele	ete			0.22	0.059668	-0.044154408	0.050184	-4.5399E-05	-0.000341144				
27		Ren	ame			0.23	0.059424	-0.043973866	0.049743	0.00045424	-0.000339096				
28		Mov	e or Copy			0.24	0.059387	-0.043946302	0.047782	0.00094186	-0.000332099				
29		Sele	ct All Sheets			0.25	0.059559	-0.044073342	0.044356	0.00140255	-0.000320349				
30				-		0.26	0.059832	-0.04427556	0.039637	0.00182252	-0.000304184				
31		st M	v Cod e			1 0.27	1.0.060157	1-0.044516398	10.033796					- -	N
Do:	ore neu (* adv										Sum10 2609	2541			
100	Et aut	1 61 /	🕅 📉 📥	1 Concu		nla 👘 w	no lene	Idea Basides	(R)c	u Blue		#2 @ ₩ 4) A 🔊 🔳 🥅	A	LEO DM

Figure 8: Creating a Copy of 1st Mode Worksheet

Step 6 (continued)

Then check the box for "<u>C</u>reate a copy" and click on "OK" button (Fig. 9)

M	icrosoft E	xcel - Copy	of Newmar	kMethod M	lodal Analys	is.xls									<u>_ 8 ×</u>
	<u>File E</u> dit	⊻iew Insert	Format <u>T</u>	ools <u>D</u> ata <u>y</u>	<u>W</u> indow <u>H</u> elp	Acro <u>b</u> at									_ 8 ×
	🛩 🔲	🚑 🖪 🖤	/ 🛷 🗠	- AI 🛙	100% -	» F	vrial	▼ 10	BI	U 🗐 🗐 🗄	5 %	+.0 .00	fi fi	- 🕭 -	A
		, ,			-	•[]				- - -					
니스			0.15	*D*F+(*F*	470414 - 140 - 6		0.00±04.0±0		+ 14 - 17 400 2005	2640					
	15	<u> </u>	= =(H5-	\$B\$5"(\$E\$	4/2°14+J4)-\$	B\$4"(\$E\$4	//2/2"(1-2"\$	8\$17)"14+\$E\$4	"J4+K4))/\$E	5\$13	E E			N	
1	A	В	U	U	E	F	G	Н		J	n	L	M	N	
2						Firs	t Mode								
3	M1 =	1	kg		∆t	t(sec)	üg	$(-L_1/M_1)\ddot{u}_g$	ä	q _i	qi				
4	K1 =	276.52	N/m		0.01	0	-0.06282	0.046483259	0.046483	0	0				
5	C1 =	0.109758	N-s/m			0.01	-0.05914	0.043764854	0.043089	0.00044786	2.26759E-06				
6	$L_1/M_1 =$	0.74				0.02	0.005203	-0.003850502	-0.00615	0.00063253	8.0799E-06				
7	φ11 =	1				0.03	0.075961	-0.056211422	-0.0599	0.00030229	1.32018E-05				
8	don =	1.574				0.04	0.067595	-0.050020003	-0.05368	-0.00026558	1.33335E-05				
9	421					0.05	0.067458	-0.049919279	-0.05205	-0.00079422	8.02099E-06				
10	ω, =	16.62889	rad/s			0.06	0.065777	-0.048674691	-0.04785	-0.00129374	-2.45378E-06				
11	f1 =	2.64657	Hz			0.07	0.063504	-0.046993152	-0.04191	-0.00174257	-1.76849E-05				
12	<u>ار</u>	0.0033				0.08	0.061549	-0.045545991	-0.03506	-0.00212741	-3 70919E-05				
13	m.* =	1.005157				0.09	0.060357	-0.044664359	-0.02781	-0.00244172	-5 99979E-05				
14						0.1	0.060173	-0.044528165	-0.02054	-0.00268345	-8.56843E-05				
15	New	mark Coeffi	cients			0.11	0.060825	-0.045010552	-0.01333	-0.00285281	-0.000113426				
16	α=	0.5				0.12	0.061601	-0.045584633	-0.00586	-0.00294877	-0.000142496				
17	β=	0.166667				0.13	0.061857	-0.045773878	0.002153	-0.00296729	-0.000172143				
18						0.14	0.061563	-0.045556597	0.0105	-0.00290403	-0.000201569				
19	Me	ove or Copy		? ×		0.15	0.06112	-0.045228799	0.018659	-0.00275823	-0.000229948				
20	M	ove celected (chaote			0.16	0.060828	-0.045012432	0.026185	-0.00253401	-0.000256472				
21	d _e T	. h l.:	510005			0.17	0.060709	-0.044924986	0.032855	-0.00223881	-0.000280392				
22	V 10	DOOK:	1			0.10	0.060653	-0.044003375	0.038567	-0.0010817	-0.000301042				
23	[0	opy of Newm	arkMethod M	lodal A		0.19	0.060541	-0.044800393	0.043254	-0.00147259	-0.000317853				
24	Be	efore sheet:				0.2	0.060319	-0.044636076	0.046826	-0.00102219	-0.000330356				
25	1	st Mode		A		0.21	0.060005	-0.04440355	0.049174	-0.00054219	-0.000338198				
26	(move to end)				0.22	0.059668	-0.044154408	0.050184	-4.5399E-05	-0.000341144				
27						0.23	0.059424	-0.043973866	0.049743	0.00045424	-0.000339096				
28						0.24	0.059387	-0.043946302	0.047782	0.00094186	-0.000332099				
29				×		0.25	0.059559	-0.044073342	0.044356	0.00140255	-0.000320349				
30	V	Create a co	PY]			0.26	0.059832	-0.04427556	0.039637	0.00182252	-0.000304184				
31						0.27	10.060157	-0.044516398	10.033796						FI
Rea	dv	OK		ancel							Sum=-10 36083	3541			
::::::::::::::::::::::::::::::::::::::	art 1	1 🚳 🚈	N N 4		1Do 🕅 Ev	nla 🕅 🕅 M	no 📾	lides		v New		<u>@</u>	0	b (2) 4	54 PM

Figure 9: Creating a Copy of 1st Mode Worksheet

Step 6 (continued)

Rename this worksheet by right clicking on the "1st Mode (2)" tab and selecting "<u>R</u>ename". Rename this worksheet "2nd Mode" (Fig. 10)

Enter the appropriate values for M₂, K₂, C₂, $\frac{L_2}{M_2}$, ϕ_2 , d_o , and v_o (Fig. 10).

Step 6 (continued)

M	licrosoft E	xcel - Newn	narkMetho	d Modal Ana	alysis.xls										_ 8 ×
	<u>Eile E</u> dit	⊻iew Insert	F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata V	<u>M</u> indow <u>H</u> elp	o Acro <u>b</u> at									_ 8 ×
	🛩 🖬	i 🖉 🕼	′ 🝼 🗠	- 21 🛍	100% -) ~ [A	rial	• 10	BI	Ū ≣ ≣ ₹	■ ₽ %	00. 0.↓ 0.↓ 00. €	t≓ t≓	💷 • 🕭	• <u>A</u> • .
	7														
	031	•	=												
	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	-
1															
2						Seco	nd Mode								
3	M2 =	1	kg		∆t	t(sec)	üg	$(-L_1/M_1)\ddot{u}_{z}$	äi		qi				
4	K2 =	1951.652	N/m		0.01	0	-0.06282	0.016331956	0.016332	0	0				
5	C ₂ =	0.15152	N-s/m			0.01	-0.05914	0.01537684	0.013841	0.00015087	7.75087E-07				
6	- 2 Lo/Mo =	0.26				0.02	0.005203	-0.001352879	-0.00653	0.00018744	2.63635E-06				
7	dia =	1				0.03	0.075961	-0 019749959	-0.02725	1 8581E-05	3 83911E-06				
8	412	.0.6356				0.00	0.067595	-0.017574596	-0.027288	-0.00023204	2 73543E-06				
9	Ψ22 -	-0.0000				0.04	0.067458	-0.017539206	-0.02200	-0.00023204	-6 1865E-07				
10	(a) =	44 17751	rad/c			0.00	0.065777	-0.017101918	-0.01027	-0.00042770	-5.54191E-06				
11	6 =	7 021069	100/5 Ll-r			0.00	0.063504	0.016511109	0.0002	0.00054572	1.100295-05				
11	12-	0.001745	112			0.07	0.0000004	-0.018511100	0.003104	-0.00034332	-1.10030E-05				
12	ι = •	0.001715				0.08	0.061549	-0.016002645	0.015461	-0.00044219	-1.60672E-05				
13	m ₂ =	1.033285				0.09	0.060357	-0.015692883	0.02263	1 22045 05	-1.96166E-05				
15	New	rmark Coeff	icients			0.1	0.000175	-0.015814518	0.023201	0.00022855	-2.03500E-05				
16	α =	0.5				0.12	0.061601	-0.016016222	0.016197	0.00042407	-1.65387E-05				
17	β=	0.166667				0.13	0.061857	-0.016082714	0.00657	0.0005379	-1.16486E-05				
18						0.14	0.061563	-0.016006372	-0.00415	0.00055002	-6.11969E-06				
19						0.15	0.06112	-0.0158912	-0.01403	0.00045916	-9.91467E-07				
20	In	itial Conditi	ons			0.16	0.060828	-0.015815179	-0.02128	0.00028263	2.77794E-06				
21	d _o =	U	m			0.17	0.060709	-0.015/84454	-0.02455	5.3498E-05	4.48582E-06				
22	v ₀ =	0	m			0.10	0.060653	-0.015769034	-0.02319	-0.00010519	3.81607E-06				
23						0.19	0.060541	-0.015740678	-0.01744	-0.00038833	9.00572E-07				
24						0.2	0.060319	-0.015682946	-0.00838	-0.00051741	-3.70365E-06				
25						0.21	0.060005	-0.015601247	0.002279	0.000479	-9.11097E-06				
20						0.22	0.059424	-0.015450277	0.012434	-0.00047403	-1.43137 E-05				
28						0.24	0.059387	-0.015440593	0.024227	-8.7328E-05	-2.03185E-05				
29						0.25	0.059559	-0.015485228	0.02351	0.00015136	-1.99924E-05	1			
30						0.26	0.059832	-0.015556278	0.018328	0.00036055	-1.73897E-05				
31		st Mode \ 2	nd Mode 🥭	st Eloor / 2	nd Eloor / at	1 0 27 1 / 02 / a1 /	LO 060157	L-0.015640896	LO 009678	1 0 00050057	-1 3012E-05	1			
Dee	do - 1911 V - 4		a node /		nariosi Vd.	V de V de V		· / 35 / 75 / 35 /							

Figure 10: Worksheet for Second Mode

Step 7 – Repeat Step 6 for Additional Modes

Step 8 – Determine the Response at Each of the Floors

Determine the Response of the first floor using the equations:

 $u = \Phi q$ $\dot{u} = \Phi \dot{q}$ $\ddot{u} = \Phi \ddot{q}$

Step 8 (continued)

For example for a 2DOF structure, the first floor response is (Fig. 11)

 $u_{1} = \phi_{11}q_{1} + \phi_{12}q_{2}$ $\dot{u}_{1} = \phi_{11}\dot{q}_{1} + \phi_{12}\dot{q}_{2}$ $\ddot{u}_{1} = \phi_{11}\ddot{q}_{1} + \phi_{12}\ddot{q}_{2}$

(Equation 11)

(Equation 12)

(Equation 13)

Step 8 (continued)

and the second floor response is (Fig. 12)

$\mathbf{u}_2 = \mathbf{\phi}_{21}\mathbf{q}_1 + \mathbf{\phi}_{22}\mathbf{q}_2$	(Equation 14)
$\dot{\mathbf{u}}_2 = \boldsymbol{\phi}_{21} \dot{\mathbf{q}}_1 + \boldsymbol{\phi}_{22} \dot{\mathbf{q}}_2$	(Equation 15)
$\ddot{\mathbf{u}}_2 = \mathbf{\Phi}_{21}\ddot{\mathbf{q}}_1 + \mathbf{\Phi}_{22}\ddot{\mathbf{q}}_2$	(Equation 16)

The first floor absolute acceleration is $\ddot{u}_1^T = \ddot{u}_1 + \ddot{u}_g$ (Equation 17)

The second floor absolute acceleration is $\ddot{u}_2^T = \ddot{u}_2 + \ddot{u}_g$ (Equation 18)

Step 8 (continued)

🔀 Microsoft Excel - Newmark Method Modal Analysis.xls																
😰 File Edit View Insert Format Iools Data Window Help Acrobat											- B ×					
	🚔 🔲 🖉	를 🖪 🂖	🛷 KO +	≜ ↓ ∭	100% 🔻	» Aria	el .	v 10	- B /	u ≣	= = 🛱	\$ %	◆.0 .00	€≣ €≣ [- 🕭 -	<u>A</u>
1 📻						. 11										
JM	E		_ [
	P30	• •	-	D	E	F		ы	1	1	L.	1		N	0	_
1	A	B		U	E	Г	G	п		J	ĸ	L	IVI	IN	U	<u> </u>
2	First Floor															
3	t(sec)	ü,	ů,	u1	ü, ^T											
4	0	0.062815	<u>,</u>	. 0												
5	0.01	0.05693	0.000559	3.04E-06	-0.00221	<										
6	0.02	-0.01268	0.00082	1.07E-05	-0.00748											
7	0.03	-0.08714	8,000321	1.7E-05	0.01118											
8	0.04	-0.07656	-0.0005	1.6 YE-05	-0.00896		\searrow									
9	0.05	-0.06832	-0.00122	7.4E-Q6	-0.00086	-Eau	ation	17								
10	0.06	-0.05406	-0.00183	-8E-06	0.011718	Dqu	auon	1 /								
11	0.07	-0.03675	-0.00229	2.9E-05	0.026757											
12	0.08	-0.01959	-0.00257	-5.3E-05	0.041954	-\Fm	ation	11								
13	0.09	-0.00518	-0.00269	-8E-15	0.055181	Lqu	auton	11								
14	0.1	0.00472	-0.0027	-0.00011	0.064694											
16	0.12	0.000070	-0.00202	-0.00016	0.070000	For	ation	12								
18	0.12	0.006354	-0.00235	-0.00010	0.067947	Lqu	uuion	14								
19	0.15	0.004633	-0.0023	-0.00023	0.065753	\										
22	0.18	0.015378	-0.00207	-0.0003	0.076031	For	ation	13								
25	0.21	0.051453	-0.00109	-0.00035	0.111458	Lyu	auon	1.5								
26	0.22	0.062677	-0.00052	-0.00036	0.122345											
27	0.23	0.070053	0.000144	-0.00036	0.129478											
28	0.24	0.07201	0.000855	-0.00035	0.131397											
29	0.25	0.067866	0.001554	-0.00034	0.127424											
30	0.26	0.057965	0.002183	-0.00032	0.117797											
31	0.27	0.043474	0.00269	-0.0003	0.103631											
32	0.28	0.026142	0.003038	-0.00027	0.086728											
33	0.29	0.008216	0.00321	-0.00024	0.069259											
34	0.3	-0.0079	0.003212	-0.0002	0.053384											
35	0.31	-0.02036	0.00307	-0.00017	0.040857											
36	0.32	-0.0283	U.002827	-0.00014	0.032731											
37	0.33	-0.03174	0.002527	-0.00012	0.029205										-	
38		-U.U3134 • Mode / 2rd	U.UU2212 Mode \ 1-1	-9.3E-05 Elect / 2md	U.U29637	02 / 21 /1	/d1 / at T	102/02/4	2 / ₃ 2T /							┝╌╌
		r mouer <u>X</u> zha	THOUG XISC	FIDUR <u>A</u> 2nd		45 Y at Y vi	Xur Xarry	(az X vz X a	<u> </u>							
KBa	uy															

Figure 11: First Floor Response

Step 8 (continued)

M	licrosoft Exce	el - Newmarl	kMethod Me	odal Analysi	is.xls												- 8 >
	<u>File Edit Vie</u>	w <u>I</u> nsert Fg	ormat <u>T</u> ools	<u>D</u> ata <u>W</u> ind	ow <u>H</u> elp Aci	ro <u>b</u> at											- 8 >
	🖻 🖬 🖨) 🖪 🖤 🔄	ダ 🗠 🗸	2↓ 🛍 10	.0% •			- 10	• B	ΙU			\$%	•.0 .00 •.• 00. •	(₽ (₽ 8	8 • 🔕 • 8	<u>A</u> -
1	1																
]	D33	- 1															
	FJJ A			D	F	F	G	Ц			1	- K	1	м	N	0	_
1	~	U	U	U	L		0		-		J	n	L	191	IN	0	
2			Secon	d Floor													
3	Time (sec)	ü,	ů,	u ₂	ü ₂ ^T												
4	0	0.062784	5 0		-3.1E-05												
5	0.01	0.059024	0.000609	3.08E-06	-0.00012												
6	0.02	-0.00554	0.000876	1.1E-05	-0.00034												
7	0.03	-0.07696	0.000464	₹.83E-05	-0.001												
8	0.04	-0.06995	-0,00027	1.92E-05	-Q.00235	<u> </u>		_									
9	0.05	-0.07159	-0.08098	1.3톤-05	-0.80413	Equi	ation	18									
10	0.06	-0.07138	-0.00169	-3.4E-DZ	-0.0856	Lqui	401011									_	
11	0.07	-0.06925	-0.0024	-2.1E-05	-0.00575			_									
12	0.08	-0.065	-0.00307	-4.8E-05	-8,00346	Fau	ation	16								_	
13	0.09	-0.05815	-0.00368	-8.2 E- 05	0.002207	Lyu	ation	10									
14	0.1	-0.04839	-0.00422	-0.00012	0.011787												
15	0.11	-0.03555	-0.00464	-0.00017	0.02528	Eau	tion	15								_	
16	0.12	-0.01952	-0.00491	-0.00021	0.042085	Equi	ation	13								_	
17	0.13	-0.000/9	-0.00501	-U.UUU2b	0.0611069												
18	0.14	0.019162	-0.00492	-0.00031	0.080725			1 4									
19	0.15	0.038284	-0.00463	-0.00036	0.099404	1Equa	ation	14									
20	0.16	0.054741	-0.00417	-0.00041	0.115569	· · ·											
21	0.17	0.007/044	-0.00356	-0.00044	0.128025											_	
22	0.10	0.070466	0.00264	0.00048	0.130097												
23	0.18	0.079100	-0.00207	0.00052	0.139707												
24 2E	0.2	0.075020	-0.00120	-0.00052	0.135340												
20	0.21	0.073532	0.00001	-0.00055	0.130507				-				-			-	
20	0.22	0.065387	0.00023	-0.00000	0.124811				-						-	-	
28	0.23	0.000007	0.000512	-0.00052	0.124011									_			
20	0.24	0.053011	0.001330	-0.00001	0.114431									-		-	
30	0.26	0.05074	0.002639	-0.00047	0.110572												
31	0.27	0.047043	0.003128	-0.00044	0.1072												
32	0.28	0.042943	0.003578	-0.00041	0.103529												
33	0.29	0.037551	0.003981	-0.00037	0.098595												
	► N \ 1st M	lode / 2nd M	Node / 1st F	loor) 2nd F	loor / q1 / q2	(a1 / v1 /	(d1 / a1T /	a2 / v2 / d	2 <u>/</u> a2T /	•							١Ì
Rea	idv										Γ						

Figure 12: Second Floor Response