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2 Story Shear 
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2 Story Bending 
Beam
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m2u2
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3 Story Bending 
Beam

Given:
m1
m2
L1=L2=L3=L
EI
ω1
ω2
ω3

Solve for m3

m3

m2

m1

L3

L2

L1

u2

u1

u3
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Part 1: Determining the unknown mass of your structure

Step 1:  Assemble the mass and stiffness matrices for your structure

For Example:

m1

m2

L1

L2

EIc

EIc

EIb

EIb
u1

u2

u3u4

u5u6

2h

Find m2, given m1, L1 = L2 = h, EIc, & EIb
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Example (continued): m =

m 1

0

0

0

0

0

0

m 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

48 E. I c.

h3

24 E. I c.

h3

0

0

6 E. I c.

h2

6 E. I c.

h2

24 E. I c.

h3

24 E. I c.

h3

6 E. I c.

h2

6 E. I c.

h2

6 E. I c.

h2

6 E. I c.

h2

0

6 E. I c.

h2

8 E. I c.

h

4 E. I b.

2 h.

2 E. I b.

2 h.

2 E. I c.

h

0

0

6 E. I c.

h2

2 E. I b.

2 h.

8 E. I c.

h

4 E. I b.

2 h.

0

2 E. I c.

h

6 E. I c.

h2

6 E. I c.

h2

2 E. I c.

h

0

4 E. I c.

h

4 E. I b.

2 h.

2 E. I b.

2 h.

6 E. I c.

h2

6 E. I c.

h2

0

2 E. I c.

h

2 E. I b.

2 h.

4 E. I c.

h

4 E. I b.

2 h.

k =

Step 1: Mass and Stiffness
Matrices (continued)
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Determining the unknown mass of your structure

Step 2:  Perform Static Condensation (if necessary)

[ ] 







=

000t

t0tt

kk
kk

k

k00 =

8 E. I c.

h

4 E. I b.

2 h.

2 E. I b.

2 h.

2 E. I c.

h

0

2 E. I b.

2 h.

8 E. I c.

h

4 E. I b.

2 h.

0

2 E. I c.

h

2 E. I c.

h

0

4 E. I c.

h

4 E. I b.

2 h.

2 E. I b.

2 h.

0

2 E. I c.

h

2 E. I b.

2 h.

4 E. I c.

h

4 E. I b.

2 h.

ktt =

48 E. I c.

h3

24 E. I c.

h3

24 E. I c.

h3

24 E. I c.

h3

k0t =

0

0

6 E. I c.

h2

6 E. I c.

h2

6 E. I c.

h2

6 E. I c.

h2

6 E. I c.

h2

6 E. I c.

h2

Example (continued):

0t
1

00
T
0ttttt kkkkk̂ −−=
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ktt - k0t
T k00

-1 k0t =
24 E. Ic. 32 Ic2. 63 Ic. Ib. 18 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 4 Ic2. 18 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

=ttk̂

Where        is the condensed stiffness matrix ttk̂

Example (continued):

Step 2: Static Condensation
(continued)
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Determining the unknown mass of your structure

Step 3:  Solve the Eigen-value problem to determine the determinant of

[ ] [ ]mk 2ω−

Example (continued):

24 E. Ic. 32 Ic2. 63 Ic. Ib. 18 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
. ω

2 m1.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 4 Ic2. 18 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
. ω

2 m2.
[ ] [ ]mk 2ω− =
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Example (continued):

[ ] [ ]mk 2ω− =

=

Step 3: Eigen-value Problem
(continued)
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Determining the unknown mass of your structure

Step 4:  Plug the given values for m1, L1, L2, EI, & ω1 into 

[ ] [ ]mk 2ω− = 0, and solve for the unknown mass.

Given:
m1 = 0.2 kg
L1 = 0.3048 m
L2 = 0.3048 m
EI = 1.0889242 n-m2

ω1 = 12.566 rad/s
ω2 = 86.013rad/s

Example (continued):
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Plug m1, L1, L2, EI, & ω1 into [ ] [ ]mk 2ω− = 0

Solve for m2

m2 =

m2 = 0.949 kg

Example (continued):

24 E. Ic.
24 E. Ic3. 216 Ic2. E. Ib. 4 Ic2. ω 1

2. m1. h3. 18 Ic. ω 1
2. m1. h3. Ib. 216 Ic. E. Ib2. 9 ω 1

2. m1. h3. Ib2.

h3 ω 1
2. 768 E. Ic3. 28 Ic2. ω 1

2. m1. h3. 1512 Ic2. E. Ib. 432 Ic. E. Ib2. 36 Ic. ω 1
2. m1. h3. Ib. 9 ω 1

2. m1. h3. Ib2..
.

Step 4: Solve for unknown m
(continued)
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Determining the unknown mass of your structure

Plug the newly determined mass along with the remaining

[ ] [ ]mk 2ω−ωi into and verify that the determinant

is still equal to zero

Step 5:  Perform a self-check on the value of the mass you just found

24 E. Ic.
24 E. Ic3. 216 Ic2. E. Ib. 4 Ic2. ω 2

2. m1. h3. 18 Ic. ω 2
2. m1. h3. Ib. 216 Ic. E. Ib2. 9 ω 2

2. m1. h3. Ib2.

h3 ω 2
2 768 E. Ic3. 28 Ic2. ω 2

2. m1. h3. 1512 Ic2. E. Ib. 432 Ic. E. Ib2. 36 Ic. ω 2
2. m1. h3. Ib. 9 ω 2

2. m1. h3. Ib2...
.m2 =

m2 = 0.949 kg  (same as with ω1 – OK!)

Example (continued):
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Part 2: Modal Analysis
Step 1: Determine the Mode Shapes φn

Continuing with the Eigen-value problem solution 
(again, Matlab does this, or by hand for a 2-dof
system), for each      we get an associated    mode 
shape. To do this (for each identified ), go ahead 
and substitute this  for in Eq. 1 above. Upon this 
substitution, you can solve for the corresponding 
vector u, the components of which defines the mode 
shape .

nω nφ

nω
nω ω

nφ

( ) 0=u m-k 2ω Equation 1
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For the Previous example:

ω1 = 12.566 rad/s

24 E. Ic. 32 Ic2. 63 Ic. Ib. 18 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
. ω 12 m1.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 4 Ic2. 18 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
. ω 12 m2.

1.397 103.

581.566

581.566

242.065
=

Let φ11 = 1.0; therefore, φ21 = 2.402

Step 1: Mode Shapes
(continued)

1.397 103.

581.566

581.566

242.065

φ 11

φ 21
. =

0

0
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Example (continued):

ω2 = 86.011 rad/s

Let φ12 = 1.0; therefore, φ22 = -0.0876

24 E. Ic. 32 Ic2. 63 Ic. Ib. 18 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
. ω 22 m1.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 10 Ic2. 27 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
.

24 E. Ic. 4 Ic2. 18 Ic. Ib. 9 Ib2.

28 Ic2. 36 Ic. Ib. 9 Ib2. h3.
. ω 22 m2.

50.933

581.566

581.566

6.629 103.
=

50.933

581.566

581.566

6.629 103.

φ 12

φ 22
. =

0

0

Step 1: Mode Shapes
(continued)
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11φ

21φ 22φ

12φ

First Mode Second Mode

Step 1: Mode Shapes
(continued)

Example (continued):
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Part 2: Modal Analysis
Step 2: Determine the Modal Participation Factors

i

i

M
L

∑
=

=
NDOF

1j

φ 2
jiji mM

∑
=

=
NDOF

1j

φ jiji mL


























=

iNDOF

2i

1i

i

.

.

.

φ

φ

φ

φ
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∑
=

=
NDOF

1j

φ 2
jiji mM

∑
=

=
NDOF

1j

φ jiji mL

Step 2: Modal Participation
Factors (continued)

Example (continued):

2
212

2
1111 mmM φφ +=

2
222

2
1212 mmM φφ +=

2111 φφ 211 mmL +=

2212 φφ 212 mmL +=

= (0.2)(1)2 + (0.949)(2.402)2 = 5.67535 kg

= (0.2)(1)2 + (0.949)(-0.0876)2 = 0.20728 kg

= (0.2)(1) + (0.949)(2.402) = 2.4795 kg

= (0.2)(1) + (0.949)(-0.0876) = 0.11687 kg
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Factors (continued)

1

1

M
L

=
2.4795 kg
5.67535 kg

= 0.437

2

2

M
L

=
0.11687 kg
0.20728 kg

= 0.563

Example (continued):
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i
2
ii MK ω=

Part 2: Modal Analysis
Step 3: Determine Ki

1
2
11 MK ω=

2
2
22 MK ω=

= (12.566 )2 (5.67535) = 896.1625

= (86.011)2 (0.20728) = 1533.435
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Part 2: Modal Analysis
Step 4: Add Damping

Now, you can add any modal damping you wish (which is 
another big plus, since you control the damping in each 
mode individually). If you choose ζi = 0.02 or 0.05, the 
equations become:

g
i

i
i

2
iiiii u

M
Lqq2q &&&&& −=++ ωωξ ,  i = 1, 2, … NDOF
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Solve for qi(t) in the above uncoupled equations (using a SDOF-type 
program), and the final solution is obtained from:

Φqu =
qΦu && =
qΦu &&&& =

g
t u&&&&&& 1uu +=

Part 2: Modal Analysis
Step 5: Solve for qi(t)
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(continued)

We will solve for qi(t) using a modified version of the 
spreadsheet for solving for the response of a SDOF 

system using Newmark’s Method
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Part 3: Spreadsheet for Modal Analysis
Step-By-Step Procedure For Setting Up A Spreadsheet For Using

Newmark’s Method and Modal Analysis To Solve For The 
Response Of A Multi-Degree Of Freedom (MDOF) System

Start with the equation of motion for a linear multi-degree of freedom 
system with base ground excitation:

gu&&&&& m1kuucum −=++
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Using Modal Analysis, we can rewrite the original coupled matrix
equation of motion as a set of un-coupled equations.

,  i = 1, 2, …, NDOF

with initial conditions of   and 

Note that total acceleration or absolute acceleration will be 

g
i

i
i

2
iii u

M
L

qq2ζq &&&&& −=++ ωω

oii d0)(td == oii v0)(tv ==

giabsi uqq &&&&&& +=
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We can solve each one separately (as a SDOF system), and compute
histories of      and their time derivatives. To compute the system 
response, plug the q vector back into              and get the u vector (and 
the same for the time derivatives to get velocity and acceleration).

The beauty here is that there is no matrix operations involved, since the 
matrix equation of motion has become a set of un-coupled equation, 
each including only one generalized coordinate      .

iq
Φqu =

nq

In the spreadsheet, we will solve each mode in a separate worksheet.
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Step 1 - Define System Properties and Initial Conditions for First Mode

(A)Begin by setting up the cells for the Mass, Stiffness, and Damping
of the SDOF System (Fig. 1).  These values are known.

(B) Set up the cells for the modal participation factor       and mode shape 

φi (Fig. 1). These values must be determined in advance using Modal 
Analysis.

i

i

M
L

(C) Calculate the Natural Frequency of the SDOF system using the
equation

(Equation 1)ii MK=iω
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Note:  If the system damping is given in terms of the  Modal Damping
Ratio ( ζi ) then the Damping ( Ci ) can be calculated using the equation:

Ci = 2 ζi ωi Mi (Equation 2)

a) the Average Acceleration Method, use            and          .

b) the Linear Acceleration Method, use           and            .
2
1α =

4
1β =

2
1α =

6
1β =

(D)  Set up the cells for the 2 Newmark Coefficients α & β (Fig. 1), 
which will allow for performing

(E) Set up cells (Fig. 1) for the initial displacement and velocity (do and
vo respectively)

Step 1 (continued)
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Equation 1

Equation 2

Figure 1: Spreadsheet After Completing Step 1

Step 1 (continued)
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Step 2 – Set Up Columns for Solving The Equation of Motion Using
Newmark’s Method

Place a cell (Fig. 2) for the time increment (∆t).

Place columns (Fig. 2) for the time, base excitation, applied force 
divided by mass, relative acceleration, relative velocity, and relative 
displacement.
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Base Excitation

Applied Force Divided By Mass

Relative Acceleration

Relative Velocity

Relative Displacement

Figure 2: Spreadsheet After Completing Step 2

Step 2 (continued)
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Step 3 – Enter the Time t & Applied Force f(t) into the Spreadsheet

(Equation 3) (Fig. 3)∆ttt i1i +=+

For the earthquake problem (acceleration applied to base of the 
structure), the applied force divided by the mass is calculated using:

(Equation 4) (Fig. 3)
ig

1

1

1

i u
M
L

M
(t)f

&&−=

where, is the applied base acceleration 
at step i.  (Typically this is the base excitation
time history)

igu&&

Check the units of the input motion file.  
They must be compatible with the units 

of the mass, stiffness, and damping!

1qm

gu&&
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Equation 4
Equation 3

Figure 3: Spreadsheet After Completing Step 3

Step 3 (continued)
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Step 4 – Compute Initial Values of the Relative Acceleration, Relative 
Velocity, Relative Displacement, and Absolute Acceleration

(A)  The Initial Relative Displacement and Relative Velocity are known 
from the initial conditions (Fig. 4).

(Equation 5)

(Equation 6)

(B)  The Initial Relative Acceleration (Fig. 4) is calculated using

(Equation 7)o
2

og dωv2ζu
Mi
Li)0t(q −−−== ω&&&&

ov0)(tq ==&

od0)q(t ==
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Equation 7

Equation 6

Equation 5

Figure 4: Spreadsheet After Completing Step 4

Step 4 (continued)
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Step 5 – Compute Incremental Values of the Relative Acceleration, 
Relative Velocity, Relative Displacement, and Absolute Acceleration At 

Each Time Step (Fig. 5) 

(A)

Where, the effective mass, 

( )

*m

qq∆tq2β1∆t
2
1Kqq

2
∆tCu

M
L

q
1

iii
2

1ii11ig
1

1

1i















 ++−−






 +−−

=
+

+

&&&&&&&&

&&

( ) i1ii1i q∆tαqα1∆tqq &&&&&& ++−= ++

( ) ii
2

1i

2

i1i q∆tqβ∆tq2β1
2
∆tqq +++−= ++ &&&&&

β∆Kα∆CM*m 1111
2tt ++=

(Equation 8)

(Equation 9)

(Equation 10)
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Equation 8

Equation 9

Equation 10

Figure 5: Spreadsheet with values for the Relative Acceleration, Relative 
Velocity, and Relative Displacement at Time Step 1

Step 5 (continued)
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(B) Then, highlight columns I, J, & K and rows 4 through to the last time 
step (in this example 4003) and “Fill Down” (Ctrl+D).  

See Figures 6 and 7.

Figure 6: Highlighted Cells

Step 5 (continued)
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Figure 7: Spreadsheet After “Filling Down” Columns I through K

Step 5 (continued)
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Step 6 – Create Additional Worksheet for Second Mode 

Make a copy of the “1st Mode” worksheet by right clicking on the “1st

Mode” tab and selecting “Move or Copy” (Fig. 8)

Figure 8: Creating a Copy of 1st Mode Worksheet
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Then check the box for “Create a copy” and click on “OK” button 
(Fig. 9)

Figure 9: Creating a Copy of 1st Mode Worksheet

Step 6 (continued)
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Rename this worksheet by right clicking on the “1st Mode (2)” tab and 
selecting “Rename”.  Rename this worksheet “2nd Mode” (Fig. 10)

Enter the appropriate values for M2, K2, C2,         , φ2, do, and vo (Fig. 10).
2

2

M
L

Step 6 (continued)
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Figure 10: Worksheet for Second Mode

Step 6 (continued)
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Step 7 – Repeat Step 6 for Additional Modes 

Step 8 – Determine the Response at Each of the Floors

Determine the Response of the first floor using the equations:

Φqu =

qΦu && =

qΦu &&&& =
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For example for a 2DOF structure, the first floor response is (Fig. 11)

(Equation 11)

(Equation 12)

(Equation 13)

2121111 qqu φφ +=

2121111 qqu &&& φφ +=

2121111 qqu &&&&&& φφ +=

Step 8 (continued)
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and the second floor response is (Fig. 12)

(Equation 14)

(Equation 15)

(Equation 16)

2221212 qqu φφ +=

2221212 qqu &&& φφ +=

2221212 qqu &&&&&& φφ +=

g1
T
1 uuu &&&&&& +=

g2
T
2 uuu &&&&&& +=

The first floor absolute acceleration is 

The second floor absolute acceleration is

(Equation 17)

(Equation 18)

Step 8 (continued)
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Equation 11

Equation 12

Equation 13

Equation 17

Figure 11: First Floor Response

Step 8 (continued)
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Equation 16

Equation 15

Equation 14

Equation 18

Figure 12: Second Floor Response

Step 8 (continued)


