

Systems with Distributed Mass and Elasticity

1. Free vibration of a bending beam

Bending Beam Equation:

$$m\ddot{u} + EIu'''' = 0 \tag{1}$$

Define solution as:

$$u(x,t) = \phi(x)q(t) \tag{2}$$

Substitute Steady state

$$\ddot{u} = -\omega^2 u \tag{3}$$

$$EI\phi''''-\omega^2 m\phi = 0 \tag{4}$$

$$EI\phi^{\prime\prime\prime\prime} - \beta^4 m\phi = 0 \tag{5}$$

$$\beta^4 = (\omega^2 m / EI) \tag{6}$$

Solution is:

$$\phi(x) = C_1 \sin \beta x + C_2 \cos \beta x + C_3 \sinh \beta x + C_4 \cosh \beta x \tag{7}$$

For a simply supported beam, the boundary conditions are:

$$u(0) = 0, u''(0) = 0, u(L) = 0, u''(L) = 0$$
(8)

Leading to:

$$\sin \beta L = 0 \tag{9}$$

or

$$\beta L = n\pi \tag{10}$$

or:

$$w_n = (n^2 \pi^2 / L^2)(\sqrt{EI/M}) \tag{11}$$

and:

$$\phi_n(x) = C_1 \sin(n\pi x/L) \tag{12}$$

For a cantilever beam:

$$u(0) = 0, u'(0) = 0, u''(L) = 0, u'''(L) = 0$$
(13)

Leading to:

$$1 + \cos \beta L \cosh \beta L = 0 \tag{14}$$

or:

$$w_1 = (3.516/L^2)(\sqrt{EI/M}), w_2 = (22.03/L^2)(\sqrt{EI/M}),$$

$$w_3 = (61.70/L^2)(\sqrt{EI/M}), w_4 = (120.9/L^2)(\sqrt{EI/M})$$
(15)

2. Modal Orthogonality

Steady state response of an SDOF system to periodic excitation is obtained at the aid of Fourier Transform and Inverse Fourier Transform.

For a cantilever beam:

$$EI\phi_n^{""} = \omega_n^2 m\phi_n \tag{16}$$

Leading to:

$$\int_{0}^{L} \phi_{r} EI \phi_{n}^{""} dx = \omega_{n}^{2} \int_{0}^{L} \phi_{r} m \phi_{n} dx$$

$$\tag{17}$$

Leading to:

$$\int_{0}^{L} EI\phi_{r}^{"}\phi_{n}^{"}dx = \omega_{n}^{2} \int_{0}^{L} m\phi_{r}\phi_{n}dx$$

$$\tag{18}$$

Replacing everything above but starting with mode r and multiplying by mode n:

$$\int_{0}^{L} EI\phi_{r}^{"}\phi_{n}^{"}dx = \omega_{r}^{2} \int_{0}^{L} m\phi_{r}\phi_{n}dx$$

$$\tag{19}$$

Subtracting:

$$\left(\omega_r^2 - \omega_n^2\right) \int_0^L m\phi_r \phi_n dx = 0 \tag{20}$$

for:

$$(\omega_r \neq \omega_n) \tag{21}$$

The orthogonality condition becomes:

$$\int_{0}^{L} m\phi_{r}\phi_{n}dx = 0 \tag{22}$$

or:

$$\int_{0}^{L} EI\phi_{r}^{"}\phi_{n}^{"}dx = 0 \tag{23}$$

Modal Analysis

Define solution as:

$$u(x,t) = \sum_{r=1}^{\infty} \phi_r(x)q_r(t)$$
(24)

Substituting in beam equation:

$$\sum_{r=1}^{\infty} m\phi_r \ddot{q}_r + \sum_{r=1}^{\infty} EI\phi_r^{"} q_r = -m\ddot{u}_g$$
(25)

Multiply by ϕ_n and integrate over domain θ -L:

$$\int_{0}^{L} \phi_{n} \sum_{r=1}^{\infty} m \phi_{r} \ddot{q}_{r} dx + \int_{0}^{L} \phi_{n} \sum_{r=1}^{\infty} EI \phi_{r}^{"} q_{r} dx = -\int_{0}^{L} \phi_{n} m dx \ddot{u}_{g}$$
(26)

Due to modal orthogonality:

$$\int_{0}^{L} m\phi_{n}^{2} dx \ddot{q}_{n} + \int_{0}^{L} \phi_{n} EI\phi_{n}^{"} q_{n} dx = -\int_{0}^{L} \phi_{n} m dx \ddot{u}_{g}$$
(27)

or:

$$M_n \ddot{q}_n + K_n q_n = -L_n \ddot{u}_g \tag{28}$$

and as always,

$$K_n = \omega^2 M_n \tag{29}$$

Now we can solve each equation for qn independently, and then calculate u:

or:

$$\ddot{q}_n + 2\zeta_n \omega_n \dot{q}_n + \omega_n^2 q_n = -(L_n / M_n) \ddot{u}_\sigma \tag{30}$$

and,

$$u(x,t) = \sum_{r=1}^{\infty} \phi_r(x)q_r(t)$$
(31)

Homework

1) Find mode shapes and natural frequencies of a cantilever shear beam defined by:

$$\rho \ddot{u} = G u'' \tag{3}$$

And boundary conditions:

$$u(0) = 0.....Gu'(h) = 0$$
 (4)

Where ρ is mass density, G is shear modulus, and h is beam height.

Hint: Note that the shear wave velocity V_s is defined by:

$$V_{s} = \sqrt{G/\rho} \tag{5}$$

and the natural frequencies in Hertz are:

$$f_n = (2n-1)V_s/4h.....n = 1,2,3,..$$
 (6)

- 2) Use a finite element program (bending beam elements) to model a 30 m cantilever bending beam ((choose EI to represent a building), and subject it to a unit load at the top. Compare the result from 3 different meshes of 2 elements, 6 elements and 10 elements. Repeat specifying a zero rotation at the top. Compare the results to the theoretical deflection at the beam top (both cases, free at the top, and zero rotation at the top).
- 3) Use a Finite Element program (Beam Elements) to model a cantilever bending beam 30 m in height (choose EI and m to represent a building). Build 3 meshes, of 2 elements, 6 elements and 10 elements, and compute mode shapes and natural frequencies in each case (focus on first 4 mode shapes and frequencies). Plot the mode shapes in each case. Compare the resonant

frequency results and verify based on the equations for natural frequency provided in this handout.