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Systems with Distributed Mass and Elasticity
1. Free vibration of a bending beam
Bending Beam Equation:
mii + Elu'""'=0 (1)
Define solution as:
u(x,1) = ¢(x)q(7) )
Substitute Steady state
i =-o'u 3)
El$""-0*m¢p =0 4)
EI$""-B*'m¢p =0 (5)
B =(o’m/EI) (6)
Solution is:
#(x) = C, sin fx+ C, cos fx + C, sinh fx + C, cosh fx (7
For a simply supported beam, the boundary conditions are:
u(0)=0,u4"(0)=0,u(L) =0,u"(L)=0 (8)
Leading to:
sin fL =0 9)
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PL=nrx (10)
or:
w, =(n’z* | LYNEI/ M) (11)
and:
¢,(x)=C, sin(nmx/L) (12)
For a cantilever beam:
u(0)=0,u'(0)=0,u"(L)=0,u""(L)=0 (13)
Leading to:
1+cos fLcosh SL =0 (14)
or:
w, = (3.516/ L )NEI/ M),w, =(22.03/ L*)WEI/ M), (15)

w, =(61.70/ LYW EI/ M),w, = (120.9/ LYW EI / M)

2. Modal Orthogonality
Steady state response of an SDOF system to periodic excitation is obtained at the aid of Fourier
Transform and Inverse Fourier Transform.

For a cantilever beam:

Elp "= 0,’mg, (16)
Leading to:
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2 (17)
¢I"EI¢H””dx = a)ﬂ ¢rm¢ndx
Leading to:
L 5 L (1 8)
[Elg, g, dx = o, [ mg, ¢ dx
Replacing everything above but starting with mode r and multiplying by mode n:
2 (19)
Elp"g"dx=w"|m¢.§ dx
Subtracting:
20
@ =0, m g,dx =0 .
for:
(0, #w,) 21)
The orthogonality condition becomes:
(22)
m,,dx =0
or:
(23)
EI$," §," dx =0
Modal Analysis
Define solution as:
(24)

u(x,0) = 4,(x)q,(1)

Substituting in beam equation:
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Zm¢rqr+zEl¢r””qr :_mu'g ( )
r=1 r=1
Multiply by ¢, and integrate over domain 0-L:
L L L (26)
[8,> mp.gdx+[8,> EIp""q,dx =~[ §,mdxii,
0 r=1 0 r=1 0
Due to modal orthogonality:
[P T y (27)
.[ me, dxqg, + J-¢nEI ¢,'"q,dx = —J- @,mdxii,
0 0 0
or:
Mné-n + ann = _Lniig (28)
and as always,
K,=w'M, (29)
Now we can solve each equation for qn independently, and then calculate u:
or:
qn + 2§na)nqn + a)qu’l = _(Ln /Mn )l:ig (30)
and,
(31

u(x,t)=2, $,(x)q,(1)

r=1
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Homework

1) Find mode shapes and natural frequencies of a cantilever shear beam defined by:

pii = Gu" ©)

And boundary conditions:

u(0)=0......Gu (h) =0 )

Where p is mass density, G is shear modulus, and / is beam height.

Hint: Note that the shear wave velocity Vj is defined by:

V.=4/Glp (5)

N

and the natural frequencies in Hertz are:

f,=Q@n=1V./4h....n=12,3,.. (6)

2) Use a finite element program (bending beam elements) to model a 30 m cantilever bending

beam ((choose EI to represent a building), and subject it to a unit load at the top. Compare the

result from 3 different meshes of 2 elements, 6 elements and 10 elements. Repeat specifying a

zero rotation at the top. Compare the results to the theoretical deflection at the beam top (both

cases, free at the top, and zero rotation at the top).

3) Use a Finite Element program (Beam Elements) to model a cantilever bending beam 30 m in

height (choose EI and m to represent a building). Build 3 meshes, of 2 elements, 6 elements and

10 elements, and compute mode shapes and natural frequencies in each case (focus on first 4

mode shapes and frequencies). Plot the mode shapes in each case. Compare the resonant
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frequency results and verify based on the equations for natural frequency provided in this

handout.
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